The integrity of plant organisms under different conditions preplant seed treatment for example Echinacea pallida

  • E. Grigorishyn
Keywords: Echinacea pallida, body integrity, principal component analysis, stimulants

Abstract

The paper quantified variability coordination bonds system integrity organismic level owing to the influence of Echinacea pallida preplant seed treatment various stimuli. It has been shown that the integration of the plants can be characterized by means of factor analysis (or principal component analysis) and is very sensitive to the effects of environmental factors, including means of preplant seed treatment. It is possible to distinguish the level of integration and integration structure of plants. It was found that under the influence of the vast majority of the studied variants of the internal structure of coordination bonds of morphological and functional features of Echinacea pallida is described by four main aspects: plant size, number of axis modules, of which it is composed, photosynthetic potential, reproductive potential. The level of integration Echinacea pallida remains practically invariant under application of various methods preplant seed treatment. Lability integration structure is a mechanism for achieving stability morphofunctional organismic systems under the influence of external environmental factors. External influences, such as seed treatment stimulants can lead to minor surgery integration structure. Because treatment does not change the character of humate correlation principal components and manifest variables. The most challenging transformation seen with Nanomiks and mixtures Nanomiks and humate. 

References

Жуков А.В. Можливості географічно зваженого метода головних компонент для аналізу просторової нестаціонарності взаємозв’язку морфометричних характеристик кукурудзи (Zea mays L.) / О.В. Жуков, К.В. Андрусевич // Чорноморський ботанічний журнал. – 2015. – Т. 11(3). – С. 257–266.

Жуков А.В. Оценка пространственной зависимости морфометрических характеристик кукурузы (Zea mays L.) от эдафических свойств / А.В. Жуков, К.В. Андрусевич // Acta Biologica Sibirica. – 2015. – № 3–4. – С. 24–41.

Жуков А.В. Оценка методами геометрической морфометрии морфологической изменчивости листовых пластинок Betula pendula Roth в экосистемах с различной степенью антропогенной трансформации / А.В. Жуков, Ю.А. Штирц, С.П. Жуков // Проблеми екології та охорони природи техногенного регіону. – 2011. – № 1(11) – С. 128–134.

Злобин Ю.А. Популяции редких видов растений: теоретические основы и методика изучения: монография / Ю.А. Злобин, В.Г. Скляр, А.А. Клименко. – Сумы: Университетская книга, 2017. – 439 с.

Концепція морфометрії у сучасній ботаніці / Ю.А. Злобін, В.Г. Скляр, Л.М. Бондарєва, К.С. Кирильчук // Чорноморський ботанічний журнал. – 2009. – Т. 5, № 1. – C. 5–22.

Прокопенко Е.В. Оценка популяционной структуры пауков Pardosa lugubris (Walckenaer, 1802) урбанизированной территории средствами геометрической морфометрии / О.В. Прокопенко, О.В. Жуков // Бюлетень моск. общества испытателей природы. – 2011. – Т. 116, вып. 11. – С. 31–40.

Тихонова И.В. Сопряженная изменчивость морфологических признаков сосны обыкновенной на юге средней Сибири / И.В. Тихонова, М.А. Шемберг // Лесоведение. – 2004. ‒ № 1. – С. 48–55.

Camussi A. Numerical taxonomy of Italian populations of maize based on quantitative traits / A. Camussi // Maydica. – 1979. – Vol. 24. – P. 161–174.

Classification of French maize populations based on morphological traits / B. Gouesnard, J. Dallard, A. Panouille, A. Boyat // Agronomie, EDP Sciences. – 1997. – Vol. 17(9–10). – P. 491–498.

Cluster and principle component analyses of maize accessions under normal and water stress conditions / S.B.M. Hafiz, F. Jehanzeb, Ejaz-ul-Hasan, B. Tahira, M. Tariq // Journal of Agricultural Sciences. – 2015. – Vol. 60, № 1, 2015. – Р. 33–48.

Llaurado M. Classification of northern Spanish populations of maize by numerical taxonomy. I. Morphological traits / M. Llaurado, J. Moreno-Gonzalez // Maydica. – 1993. – Vol. 38. – P. 15–21.

Melchiorre P. Phenetic relationships among different races of maize (Zea mays sss mays) from Salta (Argentina) / P. Melchiorre // Maydica. – 1992. – Vol. 37. – P. 329–338.

Ordas A. Relationships among American and Spanish populations of maize / A. Ordas, R.A. Malvar, A.M. De Ron // Euphytica. – 1994. – Vol. 79. – P. 149–161.

Zhukov, A.V., Andrusevich, K.V. (2015). Ability of the geographically weighted principal components analysis for assessing of the maize (Zea mays L.) spatial nonstationarity morphometrics traits interrelation. Chornomors’k. bot. z. 11(3), 397–406. doi:10.14255/2308-9628/15.113/13.

Zhukov, A.V., Andrusevich, K.V. (2015). The assessment of spatial dependence morphometric characteristics of maize (Zea mays L.) by edaphic properties. Acta Biologica Sibirica. № 3–4, 24‒41.

Zhukov, A.V., Shtirts, Yu.A., Zhukov, S.P. (2011). The estimation by methods of a geometrical morphometry of morphological variability of leaf blade Betula pendula Roth in ecosystems with a different degree of anthropogenous transformation. Problems of ecology and environmental protection technological region. № 1(11), 128–134.

Zlobin, Y.А., Slar, V.G., Klimenko, A.A. (2017). The population of rare plant species: theoretical basis and methodology of study. Sumy, 439.

Zlobin, Yu.A., Sklyar, V.G., Bondareva, L.M., Kyrylchuk, K.S. (2009). The morphometric concept in modern botany. Chornomors’k. bot. z. 5, № 1, 5–22.

Procopenko, Е.V., Zhukov, A.V. (2011). Estimation of population structure of spiders Pardosa lugubris (Walckenaer, 1802) urbanized territory by means of geometric Morphometry. Bulletin of Moscow Society of Naturalists. 116, 11, 31–40.

Tichonova, I.V., Shemberg, M.A. (2004). Conjugate variability of morphological traits of Scots pine in the south of central Siberia. Forest science. № 1, 48–55.

Camussi, A. (1979). Numerical taxonomy of Italian populations of maize based on quantitative traits. Maydica. 24, 161–174.

Gouesnard, B., Dallard, J., Panouille, A., Boyat, A. (1997). Classification of French maize populations based on morphological traits. Agronomie, EDP Sciences. 17(9–10), 491–498.

Hafiz, S.B.M., Jehanzeb, F., Ejaz-ul-Hasan, F., Tahira, B., Tariq, M. (2015). Cluster and principle component analyses of maize accessions under normal and water stress conditions. Journal of Agricultural Sciences. 60, № 1, 33–48.

Llaurado, M., Moreno-Gonzalez, J. (1993). Classification of northern Spanish populations of maize by numerical taxonomy. I. Morphological traits. Maydica. 38, 15–21.

Melchiorre, P. (1992). Phenetic relationships among different races of maize (Zea mays sss mays) from Salta (Argentina). Maydica. 37, 329–338.

Ordas, A., Malvar, R. A., De Ron, A. M. (1994). Relationships among American and Spanish populations of maize. Euphytica. 79, 149–161.

Published
2017-07-07
Section
Agricultural sciences (agronomics, agricultural ecology, land reclamation, ecology, crops husbandry, farming)