Soil microorganisms under climate change

  • O. Sherstoboeva
  • O. Demyanyuk
Keywords: climate change, soil microorganisms, hydrothermal conditions, soil organic matter, biochemical activity

Abstract

Analyses of experimental results and hypothetical reasoning suggests that global warming causes change in the structure and metabolic activity of soil microorganisms, their bioecology.Climatic conditions carry both direct and indirect impact on the livelihoods of organisms and soil formation. The temperature and humidity are important components of environmental conditions that regulate the flow of soil-biological processes.Climate changes affect the distribution of species of organisms and the interaction between them. In terrestrial ecosystems that range changes depends on the interaction of aboveground and underground groups of organisms that affect species composition, quantitative characteristics, ecosystem processes, as well as connections within communities and ecosystems. In turn, changes in the interaction of species in response to climate change will have a significant impact is on biodiversity and function of terrestrial ecosystems.Soil microorganisms also indirectly affect the C cycle by improving soil aggregation, which physically protects the soil organic matter. That is, microbial contribution to the absorption of C determined by the interaction between the amount of microbial biomass structure of microbial communities, microbial metabolic products. Due to sensitivity to temperature process cycle carbon slight change in temperature can lead to large emissions of carbon back into the soil atmosphere. Indirect effects of climate change on microorganisms indirectly through plants may be stronger than the direct effects of temperature factor on the composition of microbial communitiesThese observations suggest that global warming of climate leads to an expansion of thermophilic fungi species, and pathogens begin to spread from the south to the north. They form the overwintering structures that protect them from external influences. Increasing the temperature can lead to a decrease of the latent period and to increase of pathogens aggressiveness. Temperature can influence the function of the parasites virulence genes and resistance genes in plants.Strengthened antagonistic relationship between plants and pathogens, between host and parasite. Changing and mutually trophic links in consort, broken their resistance and orientation. Climate changes will influence soil organisms both directly (warming) and indirectly (warming and elevated CO2) due to changes in physiological and biochemical processes in the body plant.There is little evidence that atmospheric CO2 enrichment will increase total soil organic matter content because greater C flow into soil stimulates the soil food web, often leading to equivalent increases in soil CO2 efflux. No definitive conclusions about the impact of raising the temperature on enzymatic activity in the soil.This may adversely affect the organic component of soil, enhance the processes of degradation and increase greenhouse gas emissions. This will decrease productivity of agroecosystems and the quality of the resulting product, which in turn affect food security.

References

Глобальные изменения климата и почвенный покров / В.Н. Кудеяров, В.А. Демкин, Д.А. Гиличинский, С.В. Горячкин, В.А. Рожков // Почвоведение. – 2009. – № 9. – С. 1027–1042.

Левитин М.М. Микроорганизмы в условиях глобального изменения климата / М.М. Левитин // Сельскохозяйственная биология. – 2015. – Т. 50, № 5. – С. 641–647.

Хазиев Ф.Х. Ферментативная активность почв агроценозов и перспективы ее изучения / Ф.Х. Хазиев, А.Е. Гулько // Почвоведение.  1991.  № 8.  С. 88103.

Христенко С.И. Влияние гидротермических факторов на микробный комплекс оподзоленного чернозема / С.И. Христенко, С.Ф. Шатохина // Почвоведение. – 2002. – № 3. – С. 335–339.

Якушев А.В. Зависимость активности полифенолпероксидаз и полифенолоксидаз в современных и погребенных почвах от температуры / А.В. Якушев, И.Н. Кузнецова, Е.В. Благодатская, С.А. Благодатский // Почвоведение. – 2014. – № 5. – С. 590–596.

Bell T.H. Fine scale variability in soil extracellular enzyme activity is insensitive to rain events and temperature in a mesic system / T.H. Bell, H.A.L. Henry // Pedobiologia. – 2011. – № 54. – Р. 141–146.

Billings S.A. Linking microbial activity and soil organic matter transformations in forest soils under elevated CO2 / S.A. Billings, S.E. Zeigler // Global Change Biology.  2005.  Vol. 11.  P. 203–212.

Burns R.G. Soil enzymes in a changing environment: Current knowledge and future directions / R.G. Burns, D.E. DeForest, J. Marxsen, R.L. Sinsabaugh, M.E. Stromberger, M.D. Wallenstein, M.N. Weintraub, A. Zoppini // Soil Biology and Biochemistry.  2013.  Vol. 58.  P. 216–234.

Chakraborty S. Climate change, plant diseases and food security: an overview / S. Chakraborty, A.C. Newton // Plant Pathol. – 2011. – Vol. 60. – Р. 2–14.

Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? / A.T. Classen, M.K. Sundqvist, J.A. Henning, G.S. Newman, J.A.M. Moore, M.A. Cregger, L.C. Moorhead, C.M. Patterson // Ecosphere. – 2015.  Vol. 6. – P. 1–21.

The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils / D.F. Cusack, M.S. Torn, W.H. McDowell, W.L. Silver // Global Change Biology. – 2010. – № 16. – Р. 2555–2572.

The interactive effects of elevated carbon dioxide and water table draw-down on carbon cycling in a Welsh ombrotrophic bog / T. Ellis, P.W. Hill, N. Fenner, G.G. Williams, D. Godbold, C. Freeman // Ecological Engineering. – 2009. – Vol. 35, № 6. – P. 978–986.

Fenner N. Hydrological effects on the diversity of phenolic degrading bacteria in a peatland: implications for carbon cycling / N. Fenner, C. Freeman, B. Reynolds // Soil Biology and Biochemistry. – 2005. – Vol. 37, No 7. – P. 1277–1287.

Temperature drives the continental-scale distribution of key microbes in topsoil communities / F. Garcia-Pichel, V. Loza, Y. Marusenko, P. Mateo, R.M. Potrafka // Science. – 2013. – Vol. 340. – Р. 1574–1577.

Continent-wide response of mountain vegetation to climate change / M. Gottfried, H. Paul, A. Futschi, M. Akhalkats, P. Baranсo, J.L.B. Alonso, G. Coldea, J. Dick, B. Erschbamer, G. Kazakis // Nature Climate Change. – 2012. – № 2. – P. 111–115.

Climate change induces shifts in abundance and activity pattern of bacteria and archaea catalyzing major transformation steps in nitrogen turnover in a soil from a mid-European beech forest / S. Gschwendtner, J. Tejedor, C. Bimuller, M. Dannenmann, I. Kogel-Knabner, M. Schloter // PLoS One. – 2014.  Vol. 9(12).

Soil ecosystem functioning under climate change: plant species and community effects / P. Kardol, M.A. Cregger, C.E. Campany, A.T. Classen // Ecology. – 2010. – № 91. – Р. 767–781.

Koch O. Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils / O. Koch, D. Tscherko, E. Kandeler // Global Biogeochemical Cycles. – 2007. – № 21(4).

Fertile effect of elevated atmosphere CO2 concentration / V.N. Kudeyarov, K. Biel, S.A. Blagodatsky, V.M. Semenov, E.G. Dem’yanova, M.V. Dorodnikov // Eurasian Soil Science.  2006.  Vol. 39.  P. 6–14.

Lafuente R. Influence of environmental factors on plasmid transfer in soil microcosms / R. Lafuente, X. Maymo-Gatell, J. Mas-Castella, R. Guerrero // Cur. Microbiol.  1996.  Vol. 32.  P. 213220.

Langley J.A. Plant community feedbacks and long-term ecosystem responses to multi-factored global change / J.A. Langley, B.A. Hungate // AoB Plants. – 2014. – № 6.

Lutzow M. Temperature sensitivity of soil organic matter decomposition: What do we know? / М. Lutzow, I. Kogel-Knabner // Biology and Fertility of Soils.  2009.  Vol. 46.  Р. 1–15.

Dynamics of invertase, xylanase and coupled quality indices of decomposing green and brown plant residues / J. Luxhoi, J. Magid, D. Tscherko, E. Kandeler // Soil Biology & Biochemistry. – 2002. – № 34. – Р. 501–508.

Min K. Regulation by Phenolic Compounds of Soil Organic Matter Dynamics under a Changing Environment / K. Min, C. Freeman, H. Kang, Sung-Uk Choi // BioMed Research International. – 2015. – Vol. 2015.

Pritchard S.G. Soil organisms and global climate change / S.G. Pritchard // Plant Pathology. – 2011. – Vol. 60. – P. 82–99.

Sinsabaugh R.L. Phenol oxidase, peroxidase and organic matter dynamics of soil / R.L. Sinsabaugh // Soil Biology and Biochemistry. – 2010. –Vol. 42. – P. 391–404.

Six J. Bacterial and fungal contributions to carbon sequestration in agroecosystems / J. Six, S. Frey, R. Thiet, K. Batten // Soil Science Society of America Journal.  2006.  Vol. 70.  Р. 555–569.

Special Information Seminar on Climate Change and Genetic Resources for Food and Agriculture: State of Knowledge, Risks and Opportunities аnd Thirteenth Session of the UN Food and Agriculture Organization (FAO) Commission on Genetic Resources for Food and Agriculture (CGRFA 13) 16 July 2011 and 1822 July 2011.  FAO Headquarters, Rome, Italy [Електронний ресурс] // CGRFA Bulletin.  Vol. 168, № 2. – Режим доступу: http://www.iisd.ca/biodiv/cgrfa13

Van der Putten W.H. Climate change, aboveground-belowground interactions and species range shifts / W.H. van der Putten // Annual Review of Ecology, Evolution and Systematics.  2012.  Vol. 43.  Р. 365–383.

Effect of elevated CO2 and temperature on plant growth and herbivore defensive chemistry / T.O. Veteli, K. Kuokkanen, R. Julkunen-Tiitto, H. Roininen, J. Tahvanainen // Global Change Biology.  2002.  Vol. 8.  P. 1240– 1252.

A litter-slurry technique elucidates the key role of enzyme production and microbial dynamics in temperature sensitivity of organic matter decomposition / M.D. Wallenstein, M.L. Haddix, D.D. Lee, R.T. Conant, E.A. Paul // Soil Biology& Biochemistry. – 2012.  Vol. 47.  P. 1826.

Wallenstein M. Controls on the temperature sensitivity of soil enzymes: a key driver of in sity enzyme activity rates. In Shukla G., Varma A. (Eds.) / M. Wallenstein, S.D. Allison, J. Ernakovich, J.M. Steinweg, R.L. Sinsabaugh // Soil Enzymology. Springer, Berlin Heidelberg.  2011. – P. 245–258.

Ecological responses to recent climate change / G.R. Walther, E. Post, P. Convey, A. Menzel, C. Parmesan, T.J.C. Beebee, J.M. Fromentin, O. Hoegh-Guldberg, F. Bairlein // Nature.  2002.  Vol. 416.  Р. 389–395.

Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure / J.T. Weedon, G.A. Kowalchuk, R. Aerts, J. van Hal, R. van Logtestijn, N. Tas, P.M. Rоling van Bodegom // Global Change Biology. – 2011. – № 10. – Р. 1365–2486.

Williams C.J. Phenol oxidase activity in peatlands in New York state: response to summer drought and peat type / C.J. Williams, E.A. Shingara, J.B. Yavitt // Wetlands. – 2000. – Vol. 20, No. 2. – P. 416–421.

World Meteorological Organization [Електронний ресурс]. – Режим доступу: http://www.wmo.int

Kudeyarov, V.N., Demkin, V.A., Gilichinskiy, D.A. et al. (2009). Global climate change and soil cover. Pochvovedenie. № 9, 1027–1042.

Levitin, M.M. (2015). Microorganisms and global climate change. Agricultural Biology. 50, № 5, 641–647.

Haziev, F.H., Gulko A.E. (1991). The enzymatic activity of soils agrotcenozov and prospects of its study. Eurasian Soil Science. № 8, 88–103.

Khristenko, S.I., Shatokhina, S.F. (2002). The inflyence of hydrothermal factors on the microbial complex in podzolized chernozem. Eurasian Soil Science. № 3, 335–339.

Yakushev, A.V., Kuznetsova, I.N., Blagodatskaya, E.V., Blagodatskiy, S.A. (2014). Dependence polifenolperoksidaz activity and polyphenoloxidase in modern and buried soils from temperature. Eurasian Soil Science. № 5, 590–596.

Bell, T.H., Henry, H.A.L. (2011). Fine scale variability in soil extracellular enzyme activity is insensitive to rain events and temperature in a mesic system. Pedobiologia. № 54, 141–146.

Billings, S.A., Zeigler S.E. (2005). Linking microbial activity and soil organic matter transformations in forest soils under elevated CO2. Global Change Biology. 11, 203–212.

Burns, R.G., DeForest, D.E., Marxsen, J., Sinsabaugh, R.L., Stromberger, M.E., Wallenstein, M.D., Weintraub, M.N., Zoppini, A. (2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry. 58, 216–234.

Chakraborty, S., Newton, A.C. (2011). Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14.

Classen, A.T., Sundqvist, M.K., Henning, J.A., Newman, G.S., Moore, J.A.M., Cregger, M.A., Moorhead, L.C., Patterson, C.M. (2015). Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere. 6, 1–21.

Cusack, D.F., Torn, M.S., McDowell, W.H., Silver, W.L. (2010). The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Global Change Biology. № 16, 2555–2572.

Ellis, T., Hill, P.W., Fenner, N., Williams, G.G., Godbold, D., Freeman, C. (2009). The interactive effects of elevated carbon dioxide and water table draw-down on carbon cycling in a Welsh ombrotrophic bog. Ecological Engineering. 35, № 6, 978–986.

Fenner, N., Freeman, C., Reynolds, B. (2005). Hydrological effects on the diversity of phenolic degrading bacteria in a peatland: implications for carbon cycling. Soil Biology and Biochemistry. 37, № 7, 1277–1287.

Garcia-Pichel, F., Loza, V., Marusenko, Y., Mateo, P., Potrafka, R.M. (2013). Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science. 340, 1574–1577.

Gottfried, M., Paul, H., Futschi, A., Akhalkats, M., Baranсo, P., Alonso, J.L.B., Coldea, G., Dick, J., Erschbamer, B., Kazakis, G. (2012). Continent-wide response of mountain vegetation to climate change. Nature Climate Change. № 2, 111–115.

Gschwendtner, S., Tejedor, J., Bimuller, C., Dannenmann, M., Kogel-Knabner, I., Schloter, M. (2014). Climate change induces shifts in abundance and activity pattern of bacteria and archaea catalyzing major transformation steps in nitrogen turnover in a soil from a mid-European beech forest. PLoS One. 9(12).

Kardol, P., Cregger, M.A., Campany, C.E., Classen, A.T. (2010). Soil ecosystem functioning under climate change: plant species and community effects. Ecology. № 91, 767–781.

Koch, O., Tscherko, D., Kandeler, E. (2007). Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochemical Cycles. № 21(4).

Kudeyarov, V.N., Biel, K., Blagodatsky, S.A., Semenov, V.M., Dem’yanova, E.G., Dorodnikov, M.V. (2006). Fertile effect of elevated atmosphere CO2 concentration. Eurasian Soil Science. 39, 6–14.

Lafuente, R., Maymo-Gatell, X., Mas-Castella, J., Guerrero, R. (1996). Influence of environmental factors on plasmid transfer in soil microcosms. Cur. Microbiol. 32, 213220.

Langley, J.A., Hungate, B.A. (2014). Plant community feedbacks and long-term ecosystem responses to multi-factored global change. AoB Plants. № 6.

Lutzow, M., Kogel-Knabner, I. (2009). Temperature sensitivity of soil organic matter decomposition: What do we know? Biology and Fertility of Soils. 46, 1–15.

Luxhoi, J., Magid, J., Tscherko, D., Kandeler, E. (2002). Dynamics of invertase, xylanase and coupled quality indices of decomposing green and brown plant residues. Soil Biology & Biochemistry. № 34, 501–508.

Min, K., Freeman, C., Kang, H., Sung-Uk, C. (2015). Regulation by Phenolic Compounds of Soil Organic Matter Dynamics under a Changing Environment. BioMed Research International. 2015.

Pritchard, S.G. (2011). Soil organisms and global climate change. Plant Pathology. 60, 82–99.

Sinsabaugh, R.L. (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry. 42, 391–404.

Six, J., Frey, S., Thiet, R., Batten, K. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal. 70, 555–569.

Special Information Seminar on Climate Change and Genetic Resources for Food and Agriculture: State of Knowledge, Risks and Opportunities аnd Thirteenth Session of the UN Food and Agriculture Organization (FAO) Commission on Genetic Resources for Food and Agriculture (CGRFA 13) 16 July 2011 and 1822 July 2011. FAO Headquarters, Rome, Italy. CGRFA Bulletin. 168, № 2. Available at: http://www.iisd.ca/biodiv/cgrfa13

Van der Putten, W.H. (2012). Climate change, aboveground-belowground interactions and species range shifts. Annual Review of Ecology, Evolution and Systematics. 43, 365–383.

Veteli, T.O., Kuokkanen, K., Julkunen-Tiitto, R., Roininen, H., Tahvanainen, J. (2002). Effect of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Global Change Biology. 8, 1240–1252.

Wallenstein, M.D., Haddix, M.L., Lee, D.D., Conant, R.T., Paul, E.A. (2012). A litter-slurry technique elucidates the key role of enzyme production and microbial dynamics in temperature sensitivity of organic matter decomposition. Soil Biology& Biochemistry. 47, 1826.

Wallenstein, M., Allison, S.D., Ernakovich, J., Steinweg, J.M., Sinsabaugh, R.L. (2011). Controls on the temperature sensitivity of soil enzymes: a key driver of in sity enzyme activity rates. Soil Enzymology. Springer, Berlin Heidelberg. 245–258.

Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.M., Hoegh-Guldberg, O., Bairlein, F. (2002). Ecological responses to recent climate change. Nature. 416, 389–395.

Weedon, J.T., Kowalchuk, G.A., Aerts, R., van Hal, J., van Logtestijn, R., Tas, N., Rоling van Bodegom, P.M. (2011). Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Global Change Biology. № 10, 1365–2486.

Williams, C.J., Shingara, E.A., Yavitt, J.B. (2000). Phenol oxidase activity in peatlands in New York state: response to summer drought and peat type. Wetlands. 20, № 2, 416–421.

World Meteorological Organization. Available at: http://www.wmo.int

Published
2017-01-23
Section
Agricultural sciences (agronomics, agricultural ecology, land reclamation, ecology, crops husbandry, farming)