Soil aggregate structure in the system of the edaphic properties and their role in Zea mays morphometric characteristics
Abstract
In article approaches for statistical estimation of composite variables are considered. The soil aggregate structure is described by indicators which concern a category composite variable, i.e. such which in the sum always compound the fixed number (in our case it is 100 %). Mathematical properties of composite variables is essential confine possibility of various types of mathematical actions, including statistical analysis, over the data on soil aggregate structure. For application of statistical and other mathematical methods of analysis of the data of aggregate structure this data should be preliminary transformed. The classical soil structure coefficient is closest on ideology to the transformed variables, but its mathematical form not to the full meets the requirements of the further statistical procedures as is somewhat arbitrary. In the literature there are various variants of bases of orthogonal log-transformation of the data, but there are no ecologically well-founded criteria for their choice. For a choice of the best basis of transformation we offer a method of comparison of transformation results with edaphic properties matrixes or matrixes of plants morphometry. The optimum decision represents such basis which gives the best correlation with matrix external in relation to a composite variable of properties. Ordinary and partial Mantel tests have allowed to establish that the variation of aggregation structure is at the bottom of variability morphometric indicators of corn from the sowings which are on given bedrock. In turn correlation of aggregation structure with other edaphic properties is a consequence of their co-ordinated variability owing to unity of soil as is natural-historical body.References
Гончаров В.М. Оценка структуры почвы / В.М. Гончаров // Теории и методы физики почв / Под. ред. У.В. Шеина и Л.О. Карпачевского. – М.: “Гриф и К”, 2007. – С. 97–99.
Пространственная агроэкология и рекультивация земель: монография / Демидов А.А., Кобец А.С., Грицан Ю.И., Жуков А.В. – Днепропетровск: Изд-во “Свидлер А.Л.”, 2013. – 560 с.
Демидов А.А. Пространственная вариабельность агрегатного состава техноземов / А.А. Демидов, Ю.И. Грицан, А.В. Жуков // Вісник Дніпропетровського державного аграрного університету. – 2010. – № 2. – С. 11–19.
Байесовский подход для оценки гетерогенизации пространственного распределения почвенных свойств / А.В. Жуков, Е.В. Андрусевич, А.Ю. Покуса, Е.В. Лапко // Acta Biologica Sibirica. – 2015. – № 3–4. – С. 76–91.
Жуков А.В. Оценка пространственной зависимости морфометрических характеристик кукурузы (Zea mays L.) от эдафических свойств / А.В. Жуков, К.В. Андрусевич // Acta Biologica Sibirica. – 2015. – № 3–4. – С. 24–41.
Жуков А.В. Агрегатная структура техноземов Никопольского марганцеворудного бассейна / А.В. Жуков, Г.А. Задорожная, И.В. Лядская // Біологічний вісник МДПУ ім. Б. Хмельницького – 2013. – Том 3, № 3. – С. 287–316.
Медведев В.В. Структура почвы / В.В. Медведев // Харьков. – 2008. – 406 с.
Aitchison J. The statistical analysis of compositional data / J. Aitchison. – London: Chapman and Hall. – 1986. – 416 p.
Anderson A.N. Applications of fractals to soil studies / A.N. Anderson, A.B. McBratney, J.W. Crawford // Advances in Agronomy. – 1998. – Vol. 63. – P. 1–76.
Angers D.A. Aggregate stability to water / D.A. Angers, M.S. Bullock, G.R. Mehuys; editors by Carter, M.R., Gregorich, E.G. Soil sampling and methods of analysis. – [2nd Ed.]. – Canadian Society of Soil Science, CRC Press, Boca Raton, FL. – 2008. – Р. 811–819.
Bos H.J. Morphological analysis of leaf growth of maize:responses to temperature and light intensity / H.J. Bos, H. Tijani-Eniola, P.C. Struik // Netherlands Journal of Agricultural Science. – 2000. – Vol. 48. – P. 181–198.
Butler A. Statistical methods for environmental risk assessment. Compositional data module / A. Butler, S. Bierman, G. Marion // Biomathematics and Statistics Scotland, The University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings, Edinburgh EH9 3JZ. – 2005. (htpp://www.bioss.ac.uk/staff.html).
Cambardella C.A. Aggregation and organic matter / C.A. Cambardella; editor by Lal R. // Encyclopedia of Soil Science. Taylor and Francis, Boca Raton, FL. – 2006. – Р. 52–55.
Are power laws that estimate fractal dimension a good descriptor of soil structure and its link to soil biological properties? / T. Caruso, E.K. Barto. M. R.K. Siddiky, J. Smigelski, M.C. Rillig // Soil Biology and Biochemistry. – 2011. – Vol. 43. – P. 359–366.
Egozcue J.J. Groups of parts and their balances in compositional data analysis / J.J. Egozcue, V. Pawlowsky-Glahn // Mathematical Geology. – 2005. – Vol. 37. – P. 795–828.
Larney F.J. Dry-aggregate size distribution / F.J. Larney; editors by Carter M.R., Gregorich E.G. // Soil sampling and methods of analysis. – [2nd Ed.]. – Canadian Society of Soil Science, CRC Press, Boca Raton, FL. – 2008. – Р. 821–883.
Maddonni G.A. Intra-specific competition in maize: Early establishment of hierarchies among plants affects final kernel set / G.A. Maddonni, M.E. Otegui // Field Crops Res. – 2004. – Vol. 85. – P. 1–13.
Mandelbrot B.B. The fractal geometry of nature / B.B. Mandelbrot. – New York: W.H. Freeman and Company. – 1983. – 468 p.
Odeh I. Spatial Prediction of Soil Particle-Size Fractions As Compositional Data / I. Odeh, A. Todd, J. Triantafilis // Soil Science. – 2003. – Vol. 168, № 7. – P. 501–515.
Compositional analysis for an unbiased measure of soil aggregation / L Parent, C. de Almeida, A. Hernandes, J.J. Egozcue, C. Gülser, M.A. Bolinder, T.Kätterer, O. Andrén, S.E. Parent, F. Anctil, J.F. Centurion, W. Natale // Geoderma. – 2012. – Vol. 179–180. – P. 123–131.
Fractal and compositional analysis of soil aggregation / L.E. Parent, S.-E. Parent, T. Katterer, J.J. Egozcue // Proceedings of the 4th International Workshop on Compositional Data Analysis. Codawork 2011, San Feliu de Guixols, Spain, May 9–13. – 2011. – 1–14.
Pawlowsky-Glahn V. Principal balances to analyse the geochemistry of sediments / V. Pawlowsky-Glahn, J.J. Egozcue, R. Tolosana-Delgado // 2011 Annual Conference of the International Association for Mathematical Geosciences, Proceedings, September 5–9. – 2011. – P. 1–10.
Pearson K. Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs / K. Pearson // Proceedings of the Royal Society of London. – LX, 1897. – P. 489–502.
Rieu M. Fractal fragmentation, soil porosity, and soil water properties: I. Theory / M. Rieu, G. Sposito // Soil Science Society of America Journal. – 1991. – Vol. 55. – P. 1231–1238.
Thomas C.W. Log-ratios and geochemical discrimination of Scottish Dalradian limestones: a case study / C.W. Thomas, J. Aitchison; editors by A. Buccianti, G. Mateu-Figueras, V. Pawlowsky-Glahn // Compositional data analysis in the geosciences: from theory to practice. Geological Society, London, Special Publication. – 2006. – Vol. 264. – P. 25–41.
Tisdall J.M. Organic matter and water-stable aggregates in soils / J.M. Tisdall, J.M. Oades // Journal of Soil Science. – 1982. – Vol. 33. – P. 141–163.
Turcotte D.L. Fractals in geology and geophysics / D.L. Turcotte // Pure and Applied Geophysics. – 1989. – Vol. 131. – P. 171–196.
Turcotte D.L. Fractals and fragmentation / D.L. Turcotte // Journal of Geophysical Research. – 1986. – Vol. 91, B2. – P. 1921–1926.
Van Bavel C.H.M. Mean weight diameter of soil aggregates as a statistical index of aggregation / C.H.M. Van Bavel // Soil Science Society of America Proceedings. – 1949. – Vol. 14. – P. 20–23.