Structural and functional characteristics of blood-forming components of pigs with signs of latent and subclinical porcine circovirus type 2
Abstract
In Ukraine, one of the most important livestock sectors, which successfully develops and competes in the international food market, is pig breeding. Unfortunately, the successful development of the industry is hampered by infectious diseases. One of these diseases, which has acquired global in the pig population and has a significant economic impact on the pig industry, is considered as porcine circovirus type 2 (PCVD). PCV-2 ‒ an etiologic agent of a number of pig pathologies: postweaning multisystem wasting syndrome (PMWS) under the current nomenclature of PCV-2 systemic disease (PCV2-systemic disease, PCV2‑SD); PCV-2 lung disease (PCV2‑LD); PCV-2 enteric disease (PCV2‑ED); PCV-2 reproductive illness (PCV2‑RD), porcine dermatitis and nephropathy syndrome (PDNS) and PCV-2 subclinical infection (PCV2‑SI). The most common form of PCV2-infection for a long time was considered a PCV2-systemic disease, but recently the latent and subclinical forms of the manifestation of PCV2-infection are of special importance. With the latent form of PCV2-infection, the causative agent can persist for a long time in the body and not manifest itself clinically. The subclinical form of PCV2-infection is characterized by a lack of pronounced clinical signs in PCV-2 infected pigs, but they may have growth retardation and other body reactions of varying severity. For the diagnosis of these forms of manifestation of PCV2-infection, is determined the viral load PCV-2 by quantitative PCR in blood serum of animals. It was finally established that the main “target” for PCV-2 is the immune system, which in pigs, like other mammalian species, is at a sufficiently high level of structural and functional organization. The immune system along with the nervous and endocrine systems plays an important role in maintaining the body’s homeostasis and ensures its adaptation to the effects of unfavorable environmental factors. The author on the basis of pathohistological and immunohistochemical studies determined the structural and functional features of the blood-forming components of the skeleton of piglets with signs of latent and subclinical PCV2-infection. It was established that the main tissue component of the examined bone organs of the piglets is bone marrow, the relative area of which is maximal in the third segment of the thoracic bone – 70,58‒71,66 %, and in the fifth thoracic vertebra and fifth rib bone, its content is practically the same ‒ 51,17‒55,67 %. It was established that the main tissue component of the examined bone organs of the piglets is bone marrow, the relative area of which is maximal in the third segment of the thoracic bone – 70,58‒71,66 %, and in the fifth thoracic vertebra and fifth rib bone, its content is practically the same – 51,17‒55,67 %. The quantitative characteristics of bone marrow cell components, as well as tissue structures, did not differ significantly from the analogous characteristics of bone marrow of clinically healthy and PCV2‑free pigs.References
Баймишев Х.Б. Анатомия органов внутренней секреции и гeмоцитопоэза / Х.Б. Баймишев, Б.П. Шевченко, М.С. Сеитов. ‒ Самара: Книга, 2009. – 144 с.
Бенсон П. Цирковірусна інфекція свиней – актуальна проблема свинарства / П. Бенсон // Ветеринарна практика. ‒ 2013. ‒ № 5. – С. 35‒37.
Вершигора А.Е. Общая иммунология: учебное пособие / А.Е. Вершигора. ‒ К.: Вища школа, 1990. – 726 с.
Воронин Е.С. Онтогенез иммунного ответа / Е.С. Воронин, А.М. Петров, М.М. Серых // Иммунология. – М.: Колос-Пресс, 2002. – С. 332‒338.
Гаврилін П.М. Особливості структурно-функціональної організації кровотворних компонентів скелета у поросят неонатального і молочного періодів / П.М. Гаврилін, О.О. Нікіфоренко // Науковий вісник Львівської національної академії ветеринарної медицини ім. С.З. Гжицького. – Львів, 2006. – Т. 8(24), ч. 2. ‒ С. 154‒163.
Гавриліна О.Г. Методичні особливості застосування імуногістохімічної діагностики цирковірусної інфекції свиней / О.Г. Гавриліна, В.В. Еверт // Проблеми зооінженерії та ветеринарної медицини: збірник наукових праць Харківської державної зооветеринарної академії. ‒ 2016. – Вип. 32, ч. 2. – С. 294‒301.
Горальський Л.П. Основи гістологічної техніки і морфофункціональні методи дослідження у нормі та при патології / Л.П. Горальський, В.Т. Хомич, О.І. Кононський. – Житомир: Полісся, 2011. – 288 с.
Ревазов В.С. Актуальные проблемы лимфологии / В.С. Ревазов, В.Я. Бочаров // Морфологические ведомости. ‒ 2005. – № 1‒2. ‒ С. 123‒125.
Сатина Т.А. Цирковирусные инфекции свиней: обзор литературы / Т.А. Сатина. ‒ Владимир: Изд. ФГБУ “ВНИИЗЖ”. ‒ 2003. ‒ 101 с.
Соколов В.И. Цитология, гистология, эмбриология / В.И. Соколов, Е.И. Чумасов. ‒ М.: КолосС, 2004. ‒ 351 с.
Activation of the immune system is the pivotal event in the production of wasting disease in pigs infected with porcine circovirus-2 (PCV-2) / S. Krakowka, J.A. Ellis, F. McNeilly [et al.] // Veterinary Pathology. ‒ 2001. ‒ № 38. ‒ Р. 31‒42.
Alarcоn P. Cost of post-weaning multi-systemic wasting syndrome and porcine circovirus type-2 subclinical infection in England ‒ an economic disease model / P. Alarcоn, J. Rushton, B. Wieland // Preventive Veterinary Medicine. ‒ 2013. ‒ № 110. – Р. 88‒102.
Brunborg I.M. Quantitation of porcine circovirus type 2 isolated from serum/plasma and tissue samples of healthy pigs and pigs with postweaning multisystemic wasting syndrome using a TaqMan-based real-time PCR / I.M. Brunborg, T.S. Moldal, C.M. Jonassen // Journal of Virological Methods. ‒ 2004. ‒ № 122(2). ‒ Р. 171‒178.
Cell tropism and entry of porcine circovirus 2 / H.J. Nauwynck, R. Sanchez, P. Meerts [et al.] // Virus Research. ‒ 2012. ‒ № 164. – Р. 43‒45.
Development and validation of a SYBR green real-time PCR for the quantification of porcine circovirus type 2 in serum, buffy coat, feces, and multiple tissues / K.A. McIntosh, A. Tumber, J.C. Harding [et al.] // Veterinary Microbiology, 2018. ‒ № 133. ‒ Р. 23‒33.
Dvorak C.M. Cellular pathogenesis of porcine circovirus type 2 infection / C.M. Dvorak, S. Puvanendiran, M.P. Murtaugh // Virus Research. ‒ 2013. ‒ № 174. – Р. 60‒68.
Effect of porcine circovirus type 2 (PCV2) load in serum on average daily weight gain during the postweaning period / S. López-Soria, M. Sibila, M. Nofrarias [et al.] // Veterinary Microbiology. ‒ 2014. ‒ № 174. ‒ Р. 296‒301.
Effect of sow vaccination against porcine circovirus type 2 (PCV2) on virological profiles in herds with or without PCV2 systemic disease / A. López-Rodriguez, J. Dewulf, T. Meyns [et al.] // The Canadian Veterinary Journal. ‒ 2016. ‒ № 57. – Р. 619‒628.
Evaluation of natural porcine circovirus type 2 (PCV2) subclinical infection and seroconversion dynamics in piglets vaccinated at different ages / S. Oliver Ferrando, J. Segalés, S. López Soria [et al.] // Veterinary Research. ‒ 2016. ‒ № 47. – Р. 121‒140.
Finsterbusch T. Porcine circoviruses small but powerful / T. Finsterbusch, A. Mankertz // Virus Research. ‒ 2009. ‒ № 143. – Р. 177‒183.
Immunohistochemical characterisation of PCV2 associate lesions in lymphoid and non-lymphoid tissues of pigs 185 with natural postweaning multisystemic wasting syndrome (PMWS) / F. Chianini, N. Majó, J. Segalés [et al.] // Veterinary Immunology and Immunopathology. ‒ 2003. ‒ № 94. – Р. 63‒75.
Opriessnig T. Porcine circovirus type 2-associted disease: Update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies / T. Opriessnig, X.J. Meng, P.G. Halbur // Journal of Veterinary Diagnostic Investigation. ‒ 2007. – № 19(6). – P. 591‒615.
Porcine circovirus type 2 (PCV2) distribution and replication in tissues and immune cells in early infected pigs / Y.S. Opriessnig, T. Kitikoon, P. Nilubol [et al.] // Veterinary Immunology and Immunopathology. ‒ 2007. ‒ № 115. – Р. 261‒272.
Porcine circovirus type 2 in muscle and bone marrow is infectious and transmissible to naïve pigs by oral consumption / T. Opriessnig, A.R. Patterson, X.J. Meng [et al.] // Veterinary Microbiology. ‒ 2009. ‒ № 133. ‒ Р. 54‒64.
Reduced antigen presentation capability and modified inflammatory immunosuppressive cytokine expression of induced monocyte-derived dendritic cells from peripheral blood of piglets infected with porcine circovirus type 2 / N. Yang, J. Li, Q. Yang [et al.] // Archives of Virology. ‒ 2018. ‒ № 163. ‒ Р. 1231‒1239.
Segales J. Porcine circovirus type 2 (PCV2) infections: Clinical signs, pathology and laboratory diagnosis / J. Segales // Virus Research. ‒ 2012. ‒ № 164. ‒ P. 10‒19.
Shedding and infection dynamics of porcine circovirus type 2 (PCV2) after experimental infection / A.R. Patterson, S. Ramamoorthy, D.M. Madson et al. // Veterinary Microbiology, 2011. № 149. Р. 91 98.
Transmission of porcine circovirus 2 (PCV2) by semen and viral distribution in different piglet tissues / D. Gava, L.E. Zanella, N. Mores [et al.] // Pesquisa Veterinária Brasileira. ‒ 2008. ‒ № 28. – Р. 34‒39.
Young M.G. Circovirus vaccination in pigs with subclinical porcine circovirus type 2 infection complicated by ileitis / M.G. Young, G.L. Cunningham, S.E. Sanford // Journal of Swine Health and Production. ‒ 2011. ‒ № 19. ‒ Р. 175‒180.
Yu S. Effect of porcine circovirus type 2 infection and replication on activated porcine peripheral blood mononuclear cells in vitro / S. Yu, P.G. Halbur, E. Thacker // Veterinary Immunology and Immunopathology. ‒ 2009. ‒ № 127. – Р. 350‒356.
Baimishev, H.B., Shevchenko, B.P., Seitov, M.S. (2009). Anatomy of the organs of internal secretion and hemocytopoiesis. Samara: Book, 144.
Benson, P. (2013). Porcine circovirus type 2 infection ‒ the actual problem of pigs. Veterinary practice. 5, 35‒37.
Vershigora, A.E. (1990). General immunology: a study guide. Kyiv: High school, 726.
Voronin, E.S., Petrov, A.M., Gray, M.M. (2002). Ontogenesis of the immune response. Immunology. Moscow: Kolos-Press, 332‒338.
Gavrilin, P.M., Nikiforenko, O.O. (2006). Specificity of the structural and functional organisation of the hematopoietic components of the skeleton in piglets of the neonatal and dairy periodeum. Scientific Messenger of Lviv National Academy of Veterinary Medicine named after S.Z. Gzhytskyj. Lviv, 8, 154 163.
Gavrilina, O.G., Evert, V.V. (2016). Methodical features of application of immunohistochemical diagnostics of circovirus infection of pigs. Problems of animal science and veterinary medicine: Veterinary sciences. Collection of scientific works of the Kharkov State Zooveterynary Academy. Kharkov, 32, 294‒301.
Goralsky, L.P., Khomich, V.T., Kononsky, O.I. (2011). Basis of histological technology and morphofunctional methods of dosage in normology with pathology. Zhitomir: Polissya, 288.
Revazov, V.S., Bocharov, V.Y. (2005). Actual problems of lymphology. Morfologicheskie vedomosti. 1‒2, 123‒125.
Satina, T.A. (2003). Porcine circovirus type 2 infection: a review of literature. Vladimir: FGBU VNIIZH, 101.
Sokolov, V.I., Chumasov, E.I. (2004). Cytology, histology, embryology. Moscow. KolosS, 351.
Krakowka, S., Ellis, J.A., McNeilly, F., Ringler, S., Rings, D.M., Allan, G. (2001). Activation of the immune system is the pivotal event in the production of wasting disease in pigs infected with porcine circovirus-2 (PCV-2). Veterinary Pathology. 38, 31‒42.
Alarcоn, P., Rushton, J., Wieland, B. (2013). Cost of post-weaning multi-systemic wasting syndrome and porcine circovirus type-2 subclinical infection in England ‒ an economic disease model. Preventive Veterinary Medicine. 110, 88‒102.
Brunborg, I.M., Moldal, T.S., Jonassen, C.M. (2004). Quantitation of porcine circovirus type 2 isolated from serum/plasma and tissue samples of healthy pigs and pigs with postweaning multisystemic wasting syndrome using a TaqMan-based real-time PCR. Journal of Virological Methods. 122(2), 171‒178.
Nauwynck, H.J., Sanchez, R., Meerts, P. Lefebvre, D.J., Saha, D., Huang, L., Misinzo, G. (2012). Cell tropism and entry of porcine circovirus 2. Virus Research. 164, 43‒45.
McIntosh, K.A., Tumber, A., Harding, J.C., Krakowka, S., Ellis, J.A., Hill, J.E. (2018). Development and validation of a SYBR green real-time PCR for the quantification of porcine circovirus type 2 in serum, buffy coat, feces, and multiple tissues. Veterinary Microbiology. 133, 23‒33.
Dvorak, C.M., Puvanendiran, S., Murtaugh, M.P. (2013). Cellular pathogenesis of porcine circovirus type 2 infection. Virus Research. 174, 60‒68.
Lopez-Soria, S., Sibila, M., Nofrarias, M. Calsamiglia, M., Manzanilla, E.G., Ramirez-Mendoza, H., Minguez, A. et al. (2014). Effect of porcine circovirus type 2 (PCV2) load in serum on average daily weight gain during the postweaning period. Veterinary Microbiology. 174, 296‒301.
Lopez-Rodriguez, A., Dewulf, J., Meyns,T. Del-Pozo-Sacristan, R., Andreoni, C., Goubier, A., Chapat, L. [et al.]. (2016). Effect of sow vaccination against porcine circovirus type 2 (PCV2) on virological profiles in herds with or without PCV2 systemic disease. The Canadian Veterinary Journal. 57, 619‒628.
Oliver Ferrando, S., Segalеs, J., Lоpez Soria, S. Callеn, A., Merdy, O., Joisel, F., Sibila, M. (2016). Evaluation of natural porcine circovirus type 2 (PCV2) subclinical infection and seroconversion dynamics in piglets vaccinated at different ages. Veterinary Research. 47, 121‒140.
Finsterbusch, T., Mankertz, A. (2009). Porcine circoviruses small but powerful. Virus Research. 143, 177‒183.
Chianini, F., Majо, N., Segales, J. Dominguez, J., Domingo, M. (2003). Immunohistochemical characterisation of PCV2 associate lesions in lymphoid and non-lymphoid tissues of pigs 185 with natural postweaning multisystemic wasting syndrome (PMWS). Veterinary Immunology and Immunopathology. 94, 63‒75.
Opriessnig, T., Meng, X.J., Halbur, P.G. (2007). Porcine circovirus type 2-associted disease: Update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. Journal of Veterinary Diagnostic Investigation. 19(6), 591‒615.
Opriessnig, Yu.S., Kitikoon, T., Nilubol, P.D., Halbur, P.G., Thacker, E. (2007). Porcine circovirus type 2 (PCV2) distribution and replication in tissues and immune cells in early infected pigs. Veterinary Immunology and Immunopathology. 115, 261‒272.
Opriessnig, T., Patterson, A.R., Meng, X.J., Halbur, P.G. (2009) Porcine circovirus type 2 in muscle and bone marrow is infectious and transmissible to naïve pigs by oral consumption. Veterinary Microbiology. 133, 54‒64.
Yang, N., Li, J., Yang, Q., Qiao, J., Cui, D., Liu, F., Li, H. [et al.]. (2018). Reduced antigen presentation capability and modified inflammatory immunosuppressive cytokine expression of induced monocyte-derived dendritic cells from peripheral blood of piglets infected with porcine circovirus type 2. Archives of Virology. 163, 1231‒1239.
Segales, J. (2012). Porcine circovirus type 2 (PCV2) infections: Clinical signs, pathology and laboratory diagnosis. Virus Research. 164, 10‒19.
Patterson, A.R., Ramamoorthy, S., Madson, D.M., Meng, X.J., Halbur, P.G., Opriessnig, T. (2011). Shedding and infection dynamics of porcine circovirus type 2 (PCV2) after experimental infection. Veterinary Microbiology. 149, 91‒98.
Gava, D., Zanella, L.E., Morеs, N. Ciacci-Zanella, J.R. (2008). Transmission of porcine circovirus 2 (PCV2) by semen and viral distribution in different piglet tissues. Pesquisa Veterinária Brasileira. 28, 34‒39.
Young, M.G., Cunningham, G.L., Sanford, S.E. (2011). Circovirus vaccination in pigs with subclinical porcine circovirus type 2 infection complicated by ileitis. Journal of Swine Health and Production. 19, 175‒180.
Yu, S., Halbur, P.G., Thacker E. (2009). Effect of porcine circovirus type 2 infection and replication on activated porcine peripheral blood mononuclear cells in vitro. Veterinary Immunology and Immunopathology. 127, 350‒356.