Influence of the insecticide λ-cyhalothrin on oxidative stress and expression of replicative protein A in the brain of fish

Keywords: pyrethroid pesticides; rainbow trout; reactive oxygen species; RPA1; biomarkers

Abstract

Anthropogenic pollution of natural waters by pesticides became a global problem with the beginning of their widespread use in the 1960s of the twentieth century. The most studied cells’ response to the pesticides is an increase in the content of reactive oxygen species (ROS) and, as a consequence, the development of oxidative stress. The proliferative activity of cells is regulated by various factors and largely depends on the expression of proteins involved in the DNA replication. Among such proteins are replicative proteins A (RPA), which binds single-stranded DNA (ssDNA) of eukaryotes. Disruption of RPA-associated cellular activity initiates genomic imbalance, so the expression and content of RPA1 serves as a marker not only of the cell cycle stability, but also the relevant response to DNA damage caused by ecotoxicants.The aim of our study is to determine the oxidative stress development and the RPA1 protein state as a response of rainbow trout’s brain cells to the influence of sublethal concentrations of the lambda-cyhalothrin. A model experiment on the neurotoxicity of lambda-cyhalothrin was performed on the rainbow trout (Oncorhynchus mykiss) under experimental conditions in a la-boratory. The obtained results indicate that sublethal concentrations of lambda-cyhalothrin in the water induce a significant increase in ROS generation in the rainbow trout’s brain. It was found that the content of ROS in the fish brain in all experimental groups depends on both the lambda-cyhalothrin concentration and the duration of exposure to the pesticide. Oxidative stress under the influence of lambda-cyhalothrin increases the content of stress-regulating protein RPA1 in the fish brain, inhibits transcriptional activity and limits the DNA breaks repair, which, in turn, can lead to genomic instability and activation of apoptosis. This indicates a high sensitivity of the mechanism of DNA replication to the neurotoxic effect of synthetic pyrethroids. Thus, the detected increased expression of RPA1 protein may be an adequate biomarker of cellular response to the toxic effects of synthetic pyrethroids in the brain of fish. Further studies of the effect of pyrethroids on key proteins of the aquatic organisms’ reaction to intoxication are of great importance for the determination of indicative biomarkers of pesticide pollution and its potential risk

References

Alak, G., Yeltekin, A. Ç., Özgeriş, F. B., Parlak, V., Uçar, A., Keleş, M. S., & Atamanalp, M. (2019). Therapeutic effect of N- acetyl cysteine as an antioxidant on rainbow troutʼs brain in cypermethrin toxicity. Chemosphere, 221, 30–36. doi: 10.1016/j.chemosphere.2018.12.196

Alegria-Schaffer, A., Lodge, A., & Vattem, K. (2009). Performing and optimizing Western blots with an emphasis on chemiluminescent detection. Methods in Enzymology, 463, 573–599. doi: 10.1016/S0076-6879(09)63033-0

Amaeze, N. H., Komolafe, B. O., Salako, A. F., Akagha, K. K., Briggs, T.-M. D., Olatinwo, O. O., & Femi, M. A. (2020). Comparative assessment of the acute toxicity, haematological and genotoxic effects of ten commonly used pesticides on the African Catfish, Clarias gariepinus Burchell 1822. Heliyon, 24, 6(8), e04768. doi: 10.1016/j.heliyon.2020.e04768

Choi, J. H., Lindsey-Boltz, L. A., Kemp, M., Mason, A. C., Wold, M. S., & Sancar, A. (2010). Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13660–13665. doi: 10.1073/pnas.1007856107

Ciardullo, S., Aureli, F., Coni, E., Guandalini, E., Iosi, F., Raggi, A., Rufo, G., & Cubadda, F. (2008). Bioaccumulation potential of dietary arsenic, cadmium, lead, mercury, and selenium in organs and tissues of rainbow trout (Oncorhyncus mykiss) as a function of fish growth. Journal of Agricultural and Food Chemistry, 56(7), 2442–2451. doi: 10.1021/jf703572t

Dos Santos, A. A., Ferrer, B., Gonçalves, F. M., Tsatsakis, A. M., Renieri, E. A., Skalny, A. V., Farina, M., Rocha, J. T., & Aschner, M. (2018). Oxidative Stress in Methylmercury-Induced Cell Toxicity. Toxics, 6(3), 47–50. doi: 10.3390/toxics6030047

Dueva, R., & Iliakis, G. (2020).Replication protein A: a multifunctional protein with roles in DNA replication, repair and beyond, NAR Cancer, 2(3), zcaa022. doi: 10.1093/narcan/zcaa022

Fernandes, C. E., da Silveira, A. W., do Nascimento Silva, A. L., de Souza, A. I., Povh, J. A., Dos Santos Jaques, J. A., Dos Santos, E. D. A., Yonekawa, M. K. A., de Barros Penteadoall B., & Franco-Belussi, L. (2020). Osmoregulatory profiles and gill histological changes in Nile tilapia (Oreochromis niloticus) exposed to lambda-cyhalothrin. Aquatic Toxicology, 227, 105612. doi: 10.1016/j.aquatox.2020.105612

Hnasko, T. S., & Hnasko, R. M. (2015). The Western Blot. Met-hods in Molecular Biology, 1318, 87–96. doi: 10.1007/978-1-4939-2742-5_9

Huang, D.-Y., Chen, D., Wang, C., & Wei, G.-L. (2019). Temporal-spatial distribution of synthetic pyrethroids in overlying water and surface sediments in Guangzhou waterways: potential input mechanisms and ecological risk to aquatic systems. Environmental Science and Pollution Research International, 26(17), 17261–17276. doi: 10.1007/s11356-019-05013-4

Iftode, C., Daniely, Y., & Borowiec, J. A. (1999). Replication protein A (RPA): the eukaryotic SSB. Critical Reviews in Biochemistry and Molecular Biology, 34(3), 141–180. doi: 10.1080/10409239991209255

Ishibashi, T., Kimura, S., Furukawa, T., Hatanaka, M., Hashimoto, J., & Sakaguchi, K. (2001). Two types of replication protein A 70 kDa subunit in rice, Oryza sativa: molecular cloning, chara-

cterization, and cellular & tissue distribution. Gene, 272(1–2), 335–343. doi: 10.1016/s0378-1119(01)00555-8

Kenšová, R., Kružíková, K., Havránek, J., Haruštiaková, D., & Svobodová, Z. (2012). Distribution of mercury in rainbow trout tissues at embryo-larval and juvenile stages. Scientific World Journal, 20, 652–666. doi: 10.1100/2012/652496

Li, W.-G., Kostich, M. S., Bencic, D. C., Batt, A. L., See, M. J., Flick, R. W., Gordon, D. A., Lazorchak, J. M., & Biales, A. D. (2019). Multigene biomarkers of pyrethroid exposure: explo-

ratory experiments. Environmental Toxicology and Chemistry, 38(11), 2436–2446. doi: 10.1002/etc.4552

Li, Z. H., Zlabek, V., Grabic, R., Li, P., Machova, J., Velisek, J., & Randak, T. (2010). Effects of exposure to sublethal propiconazole on the antioxidant defense system and Na+-K+-ATPase activity in brain of rainbow trout, Oncorhynchus mykiss. Aqua-

tic Toxicology, 98(3), 297–303. doi: 10.1016/j.aquatox.2010.02.017

Mason, A. G., Tom, S., Simard, J. P., Libby, R. T., Bammler, T. K., Beyer, R. P., Morton, A. J., Pearson, C. E., & La Spada, A. R. (2014). Expression levels of DNA replication and repair genes predict regional somatic repeat instability in the brain but are not altered by polyglutamine disease protein expression or age. Human Molecular Genetics, 23(6), 1606–1618. doi: 10.1093/hmg/ddt551

Özdemir, S., Altun, S., Özkaraca, M., Ghosi, A., Toraman, E., & Arslan, H. (2018). Cypermethrin, chlorpyrifos, deltamethrin, and imidacloprid exposure up-regulates the mRNA and protein levels of bdnf and c-fos in the brain of adult zebrafish (Danio rerio). Chemosphere, 203, 318–326. doi: 10.1016/j.chemosphere.2018.03.190

Pillet, M., Castaldo, G., De Weggheleire, S., Bervoets, L., Blust, R., & De Boeck, G. (2019). Limited oxidative stress in common carp (Cyprinus carpio, L., 1758) exposed to a sublethal tertiary (Cu, Cd and Zn) metal mixture. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 218, 70–80. doi: 10.1016/j.cbpc.2019.01.003

Sharma, R., & Jindal, R. (2020). Assessment of cypermethrin induced hepatic toxicity in Catla catla: A multiple biomarker approach. Environmental Research, 184, 109359. doi: 10.1016/j.envres.2020.109359

Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64(2), 178–189, doi: 10.1016/j.ecoenv.2005.03.013

Wold, M. S. (1997). Replication protein A: heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annual Review of Biochemistry, 66, 61–92. doi: 10.1146/annurev.biochem.66.1.61

Xuan, L, & Wolf-Dietrich, H. (2008). Homologous recombination in DNA repair and DNA damage tolerance. Cell Research, 18(99), 99–113. doi: 10.1038/cr.2008.1

Yadav, A., Tandon, A., Seth, B., Goyal, S., Singh, S. J., Tiwari, S. K., Agarwal, S., Nair, S., & Chaturvedi, R. K. (2021). Cypermethrin impairs hippocampal neurogenesis and cognitive functions by altering neural fate decisions in the rat brain. Molecular Neurobiology, 58(1), 263–280. doi: 10.1007/s12035-020-02108-9

Yang, C., Lim, W., & Song, G. (2020). Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 234, 108758. doi: 10.1016/j.cbpc.2020.108758

Zou, L., & Elledge, S. J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science, 5625(6), 1542–1548. doi: 10.1126/science.1083430

Published
2020-10-19
How to Cite
Nedzvetsky, V., Gasso, V., Novitskiy, R., & Yermolenko, S. (2020). Influence of the insecticide λ-cyhalothrin on oxidative stress and expression of replicative protein A in the brain of fish. Agrology, 3(4), 214-218. https://doi.org/10.32819/020025
Section
Оriginal researches