Potential for the utilization of biofuel plant of the second generation of Miscanthus giganteus for phytoremediation of oil-contaminated lands

Keywords: oil-contaminated soils; biodegradation of oil; petroleum products; agrochemical indicеs of soil; soil cleaning; bioenergy crops

Abstract

Reproduction and conservation of soil fertility, protection against degradation and pollution is traditionally one of the priority tasks of the state agricultural policy. The presence of petroleum products in soils causes violation of ecological balance in the soil system, changes in morphological and physicochemical characteristics of soil horizons, in the ratio between the individual fractions of soil organic matter. Therefore, today more and more attention is paid to the development and implementation of innovative technologies for purification of oil-contaminated soils. Phytoremediation is currently considered to be the most promising method for сleaning of polluting in industrialized countries. The material elucidates the results of the study of changes in agrochemical parameters of soil in consequence of oil pollution and сarrying out of phytoremediation, determined the dynamics of the degree of purification of oil-contaminated soils, reducing their phytotoxicity by growing bioenergy culture Miscanthus giganteus. The model experiment was conducted in natural conditions of the scientific-research plot of Poltava State Agrarian Academy. Oil was applied to the soil in the following concentrations: 10, 20 and 40 g/kg. Three weeks after the application of oil into the soil, vegetative shoots of Miscanthus giganteus were planted out in the first year of life. The period of oil degradation in the soil lasted 177 days, of which 156 days – the reclamation period with using the bioenergy plant Miscanthus giganteus. It was found that growing Miscanthus giganteus on oil-contaminated soil with the application of 40 g/kg reduced the content of petroleum products by 13% compared to the control variant – without plants. With increasing concentration of oil pollution after phytoremediation of Miscanthus giganteus, the pH of the soil solution and metabolic acidity increases, the amount of absorbed bases decreases, the intensity of respiration increases significantly. The content of organic carbon in the soil was characterized by the following indicеs: at contamination of 10 g/kg the content of organic carbon reached 4.4%, at pollution of 20 g/kg – 6.1%, and at 40 g/kg – 7.0%, respectively, the content of organic matter was 8.3%, 11.5% and 13.2%, the content of humus – 7.59%, 10.52% and 12.07%. Miscanthus giganteus plants create favorable conditions for the development of microorganisms and increase their activity in consequence of the secretion of nutrients by the roots, improving soil properties. Thus, second-regeneration biofuel plants Miscanthus giganteus can be recommended for phytoremediation of oil-contaminated soils and thus, on the one hand, clean large areas of land, and on the other – to obtain biomass for further energy production, which will be environmentally friendly and economically feasible.

References

Abdel Ghany, T. M., Abboud Mohamed, A. Al, Negm Moustafa, E. & Shater Abdel-Rahman, M. (2015). Rhizosphere microorganisms as inducers for phytoremediation a review. International Journal of Bioinformatics and Biomedical Engineering. 1 (1). 7–15.

Acikel, H. (2011). The use of miscanthus (Giganteus) as a plant fiber in concrete production. Scientific Research and Essays, 6(13), 2660–2667. doi: doi.org/10.5897/sre10.1139

Banks, M. K., Kulakow, P., Schwab, A. P., Chen, Z. & Rathbone, K. (2003). Degradation of Crude Oil in the Rhizosphere of Sorghum bicolor. International Journal of Phytoremediation, 5(3), 225–234. doi: 10.1080/713779222

Barbosa, B., Boléo, S., Sidella, S., Costa, J., Duarte, M. P., … Fernando, A. L. (2015). Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L. Bioenergy Research, 8(4), 1500‒1511. doi: 10.1007/s12155-015-9688-9

Bloem. J., Hopkins. D. W. & Benedetti. A. (2005). Microbiological methods for assessing soil quality. CABI Publishing, Wallingford.

Bourgeois, E., Dequiedt, S., Lelièvre, M., van Oort, F., Lamy, I., …. Maron, P. A. (2015). Miscanthus bioenergy crop stimulates nutrient-cycler bacteria and fungi in wastewater-contaminated agricultural soil. Environmental Chemistry Letters, 13(4), 503‒511. doi: 10.1007/s10311-015-0532-4

Brandt, R., Merkl, N., Schultze-Kraft, R., Infante, C. & Broll, G. (2006). Potential of vetiver (Vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela, 8(4), 273–284. doi: 10.1080/15226510600992808

Brosse, N., Dufour, A., Meng, X., Sun, Q., & Ragauskas, A. (2012). Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels, Bioproducts and Biorefining, 6(5), 580–598. doi: 10.1002/bbb.1353

Chou, C.-H. (2009). Miscanthus plants used as an alternative biofuel material: The basic studies on ecology and molecular evolution. Renewable Energy, 34(8), 1908–1912. doi: 10.1016/j. renene.2008.12.027

Cook, R. L., Landmeyer, J. E., Atkinson, B., Messier, J. P. & Nichols, E. G. (2010). Field Note: Successful Establishment of a Phytoremediation System at a Petroleum Hydrocarbon Contaminated Shallow Aquifer: Trends, Trials, and Tribulations. International Journal of Phytoremediation, 12(7), 716–732. doi: 10.1080/15226510903390395

Dakora, F. D., & Philips D. A. (2002). Root exudates as mediators of mineral acquisition in lownutrient environments. Plant and Soil, 245(1), 35–47 doi: 10.1023/a:1020809400075

Davis, S. C., Parton, W. J., Dohleman, F. G., Smith, C. M., Del Grosso, S., Kent, A. D., & DeLucia, E. H. (2010). Comparative Biogeochemical Cycles of Bioenergy Crops Reveal Nitrogen-Fixation and Low Greenhouse Gas Emissions in a Miscanthus × giganteus Agro-Ecosystem. Ecosystems, 13(1), 144–156. doi: 10.1007/s10021-009-9306-9

Dzhura N. M., Romanyuk, O. I., Jan Gonsyor, Tsvilynuk, О. М. & Terek O. I. (2006). Using plants for restoration of the oil-cut soils. Ecology and noospherology. 17(1), 55–60 (in Ukrainian).

Dzhura, N. M. (2011). Perspektyvy fitoremediatsiyi naftozabrudnenykh gruntiv roslynamy Faba bona Medic (Vicia faba L.) [Prospects of oil polluted soils phytoremediation by Faba bona Medic. (Vicia faba L.) plants]. Visnyk of the Lviv University. Series Biology, 57, 117–124 (in Ukrainian).

Evangelou, M. W. H., Papazoglou, E. G., Robinson, B. H., & Schulin, R. (2015). Phytomanagement: Phytoremediation and the Production of Biomass for Economic Revenue on Contaminated Land. In Phytoremediation: Management of Environmental Contaminants, 1, 115‒132. doi: 10.1007/978-3-319-10395-2_9

Flathman, P. E. & Lanza, G. R. (1998). Phytoremediation: Current views on an emerging green technology. Soil and Sediment Contamination, 7(4), 415–432. doi: 10.1080/10588339891334438

Gerhardt, K. E., Huang, X. D., Glick, B. R. & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Science, 176(1), 20–30. doi: 10.1016/j.plantsci.2008.09.014

Gyrlya, L. M. (2011). Phytothermization is an effective way to reduce the content of heavy metals in soils. Proceedings Petro Mohyla Black Sea State UniversityComplex “Kyiv-Mohyla Academy”. Series: Ecology, 152(140), 57–59 (in Ukrainian).

Hromádko, L., Vranová, V., Techer, D., Laval-Gilly, P., Rejšek, K., Formánek, P., & Falla, J. (2010). Composition of root exudates of Miscanthus × Giganteus Greef et Deu. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis Sborník Mendelovy Univerzity v Brně, 58(1), 71–76. doi: 10.11118/actaun201058010071

Kaimi, E., Mukaidani, T. & Tamaki, M. (2007). Screening of Twelve Plant Species for Phytoremediation of Petroleum Hydrocarbon-Contaminated Soil, 10(2), 211–218. doi: 10.1626/pps.10.211

Kamath, R., Rentz, J. A., Schnoor, J. L., P. & Alvarez, J. J. (2004). Phytoremediation of hydrocarbon-contaminated soils: principles and applications. Studies in Surface Science and Catalysis, 151, 447–478. doi: 10.1016/s0167-2991(04)80157-5

Kuiper, I.,. Lagendijk, E. L., Bloemberg, G. V. & Lugtenberg, J. J. (2004). Rhizoremediation: a beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions, 17(1), 6–15. doi: 10.1094/mpmi.2004.17.1.6

Kurilo, V. L., Raxmetov, D. B., & Kulyk, M. I. (2018). Biological features and potential of crop yields of energy cultures in the conditions of Ukraine. Bulletin of Poltava State Agrarian Academy, 1, 11–17 (in Ukrainian). doi: 10.31210/visnyk2018.01.01

Lim M. W., Von Lau E. & Poh P.E. (2016) A comprehensive guide of remediation technologies for oil contaminated soil. Present works and future directions. Marine Pollution Bulletin, 109(1), 14‒45. doi: 10.1016/j.marpolbul.2016.04.023

Nsanganwimana, F., Pourrut, B., Mench, M., & Douay, F. (2014). Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. Journal of Environmental Management, 143, 123–134. doi: 10.1016/j.jenvman.2014.04.027

Nsanganwimana, F., Pourrut, B., Waterlot, C., Louvel, B., Bidar, G., Labidi, S., Fontaine, J., Muchembled, J., Lounès-Hadj Sahraoui, A., Fourrier, H., & Douay, F. (2015). Metal accumulation and shoot yield of Miscanthus × giganteus growing in contaminated agricultural soils: Insights into agronomic practices. Agriculture, Ecosystems & Environment, 213, 61–71. doi: 10.1016/j.agee.2015.07.023

Nurzhanova, A., Pidlisnyuk, V., Kalugin, S., Stefanovska, T., & Drimal, M. (2015). Miscanthus × Giganteus as a new highly efficient phytoremediation agent for improving soils contaminated by pesticides residues and supplemented contaminants. Communications in Agricultural and Applied Biological Sciences, 80(3), 361‒366.

Pandey, V. C., Bajpai, O., & Singh, N. (2016). Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews, 54, 58–73. doi: 10.1016/j.rser.2015.09.078

Pidlisnyuk, V. V., Erickson, L. E., Trögl, J., Shapoval, P. Y., Popelka, J., Davis, L. C., … Hettiarachchi, G. M. (2018). Metals uptake behaviour in Miscanthus x giganteus plant during growth at the contaminated soil from the military site in Sliač, Slovakia. Polish Journal of Chemical Technology, 20(2), 1‒7. doi: 10.2478/pjct-2018-0016

Pidlisnyuk, V., Stefanovska, T., Lewis, E. E., Erickson, L. E., & Davis, L. C. (2014). Miscanthus as a Productive Biofuel Crop for Phytoremediation. Critical Reviews in Plant Sciences, 33(1), 1‒19. doi: 10.1080/07352689.2014.847616

Ryan, M. G., & Law, B. (2005). Interpreting, measuring, and modeling soil respiration. Biogeochemistry, 73(1), 3–27. doi: 10.1007/s10533-004-5167-7

Schroder, P., Harvey, P. J., & Schwitzguebel, J.-P. (2002). Prospects for the phytoremediation of organic pollutants in Europe. Environmental Science and Pollution Research, 9(1), 1–3. doi: 10.1007/bf02987312

Shevchyk, L. Z. & Romaniuk, O. I. (2016). Phytoremediation of oil contaminated soil using Sea Buckthorn. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(3), 472–480. doi: 10.15421/2016120

Shevchyk, L. Z. & Romaniuk, O. I. (2017). The analysis of biological ways of restoration of the oil-contaminated soils, 1(4), 31−39. doi: 10.15587/2519-8025.2017.94052

Somerville, C., Youngs, H, Taylor, C., Davis, S. & Long, S. (2010). Feedstocks for lignocellulosic biofuels, 13(8), 790–792. doi: 10.1126/science.1189268

Susarla, S., Medina, V., & McCutcheon, S. (2002) Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering, 18(5), 647–658. doi: 10.1016/s0925-8574(02)00026-5

Técher, D., Laval-Gilly, P., Henry, S., Bennasroune, A., Formanek, P., Martinez-Chois, C., … Falla, J. (2011). Contribution of Miscanthus x giganteus root exudates to the biostimulation of PAH degradation: An in vitro study. Science of The Total Environment, 409(20), 4489–4495. doi: 10.1016/j.scitotenv.2011.06.049

Techer, D., Martinez-Chois, C., Laval-Gilly, P., Henry, S., Bennasroune, A., D’Innocenzo, M., & Falla, J. (2012). Assessment of Miscanthus × giganteus for rhizoremediation of long term PAH contaminated soils. Applied Soil Ecology, 62, 42–49. doi: 10.1016/J.APSOIL.2012.07.009

Telysheva, G., Jashina, L., Lebedeva, G., Dizhbite, T., Solodovnik, V., Mutere, O. et. al. (2011). Use of plants to remediate soil polluted with oil. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference, 1, 38–45. doi: 10.17770/etr2011vol1.925

Wanat, N., Austruy, A., Joussein, E., Soubrand, M., Hitmi, A., Gauthier-Moussard, C., Lenain, J.-F., Vernay, P., Munch, J. C. & Pichon, M. (2013). Potentials of Miscanthus × giganteus grown on highly contaminated Technosols. Journal of Geochemical Exploration, 126‒127, 78‒84. doi: 10.1016/j.gexplo.2013.01.001

Wang, J., Zhang, Z., Su, Y., He, W., He, F. & Song, H. (2008). Phytoremediation of petroleum polluted soil. Petroleum Science, 5 (2), 167–171. doi: 10.1007/s12182-008-0026-0

Witters, N., Mendelsohn, R. O., Van Slycken, S., Weyens, N., Schreurs, E., Meers, E., Tack, F., Carleer, & R., Vangronsveld, J. (2012). Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: Energy productionand carbon dioxide abatement. Biomass and Bioenergy, 39,454–469. doi: 10.1016/j.biombioe.2011.08.016

Yateem, A., Balba, M. T., El-Nawawy, A. S. & Al-Awadhi, N. (2000). Plants-associated microflora and the remediation of oil-contaminated soil. International Journal of Phytoremediation, 2(3), 183–191. doi: 10.1080/15226510009359031

Published
2020-06-09
How to Cite
Pysarenko, P., & Bezsonova, V. (2020). Potential for the utilization of biofuel plant of the second generation of Miscanthus giganteus for phytoremediation of oil-contaminated lands. Agrology, 3(3), 127-132. https://doi.org/10.32819/020015
Section
Оriginal researches