The hemeroby of soil macrofauna: spatial-ecological transformation of the communty at the ecosystem level

  • N. V. Yorkina Bogdan Khmelnitsky Melitopol State Pedagogical University, Melitopol, Ukraine
  • V. S. Budakova Bogdan Khmelnitsky Melitopol State Pedagogical University, Melitopol, Ukraine
Keywords: soil maсrofauna; ecological niche; spatial ecology; ecomorphes


The concept of hemeroby was used to explain the transformation patterns of the technosol soil macrofauna under the influence of recreation. The following hypotheses have been tested. 1). The hemeroby at the level of a particular ecosystem is manifested in the transformation of packaging of ecological niches of the soil macrofauna. 2) The anthropogenic effect causes the adaptive changes in the functional structure of the soil macrofauna. 3). The functional changes in the soil macrofauna are aimed at restoring the ecological functions of the soil that were disturbed by the hemeroby effects. The results from the study of spatial variation of the ecomorphic structure of the soil macrofauna using OMI and RLQ techniques were presented. It was shown that the biogeoceonotic situation at the location of the experimental polygon was the forest-meadow, xeromesophilic and mega-mesotrophic. Data was collected by the manual sorting of the soil sampling of 0.25×25 cm on a regular grid (7×15 samples) with a distance between points of 2 m. The temperature, soil electrical condictivity and soil penetration resistance, litter depth and grass height were measured at each sample points. Axis 1, extracted as a result of RLQ analysis, characterizes the significant role of soil penetration resistance in structuring the soil macrofauna community at all measured depths of the soil. This axis negatively correlates with soil penetration resistance and positively ‒ with soil electrical conductivity and litter depth. Axis 2 is characterized by a positive correlation with soil temperature and a negative correlation with the litter depth. The epigean megatrophocenomorphs, silvants that move through the existing soil porosity and body size of which are larger cavities in the litter or proportional to large cracks or fissures in the soil are markers of positive values of the RLQ-axis 1. Species of soil invertebrates with the specified ecological characteristics give preference to areas with lower soil penetrationresistance and higher electrical conductivity of the soil. The markers of negative values of RLQ-axis 1 are endogenous acarbonatophiles, subaerophiles that move with the help of the existing soil porosity and whose body size is proportional to the cracks or that move with the help of active passage with changes in body thickness. This set of adaptations allows animals to adapt to conditions of high soil penetration resistance. The markers of positive values of RLQ-axis 2 are xerophilic ultramegatorophs which actively make moves without changes in body thickness. The markers of negative values of RLQ-axis 2 are mesophiles. It is shown that hemeroby as an integrated indicator of anthropogenic impact causes a hierarchical response in ecosystems of different levels of organization. Recreation manifests itself through the transformation of the packaging of ecological niches of species in the soil macrofauna community in response to soil compaction and violation of the litter block. Anthropogenic impact causes adaptive changes in the functional structure of the soil macrofauna. The soil macrofauna community has the resources to explore the over-compacted soils and to restore their ecological functions, which have been disrupted due to the influence of hemeroby.


Acosta, A., Blasi, C., Carranza, M. L., Ricotta, C., & Stanisci, A. (2003). Quantifying ecological mosaic connectivity and hemeroby with a new topoecological index. Phytocoenologia, 33(4), 623–631. doi: 10.1127/0340-269X/2003/0033-0623

Angermeier, P. L. (2000). The Natural Imperative for Biological Conservation. Conservation Biology, 14(2), 373–381. doi: 10.1046/j.1523-1739.2000.98362.x

Aronson, M. F. J., La Sorte, F. A., Nilon, C. H., Katti, M., Goddard, M. A., Lepczyk, C. A. … Winter, M. (2014). A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences, 281(1780). doi: 10.1098/rspb.2013.3330

Battisti, C., & Fanelli, G. (2016). Applying indicators of disturbance from plant ecology to vertebrates: The hemeroby of bird species. Ecological Indicators, 61, 799–805. doi: 10.1016/j.ecolind.2015.10.032

Battisti, C., Poeta, G., & Fanelli, G. (2016). The disturbance regime. In: Environmental Science and Engineering (Subseries: Environmental Science) (pp. 31–46). Springer, Berlin, Heidelberg. doi: 10.1007/978-3-319-32476-0_4

Belgard, A. L. (1950). Forest vegetation of South–Eeast part of the Ukraine. Kiev University Press, Kiev (in Russian).

Bengough, A. G., Bransby, M. F., Hans, J., McKenna, S. J., Roberts, T. J., & Valentine, T. A. (2006). Root responses to soil physical conditions; growth dynamics from field to cell. Journal of Experimental Botany, 57(2 SPEC. ISS.), 437–447. doi: 10.1093/jxb/erj003

Bettez, N. D., & Groffman, P. M. (2013). Nitrogen deposition in and near an urban ecosystem. Environmental Science and Technology, 47(11), 6047–6051. doi: 10.1021/es400664b

Bogyó, D., Magura, T., Simon, E., & Tóthmérész, B. (2015). Millipede (Diplopoda) assemblages alter drastically by urbanisation. Landscape and Urban Planning, 133, 118–126. doi: 10.1016/j.landurbplan.2014.09.014

Borges, P. A. V., Aguiar, C., Amaral, J., Amorim, I. R., André, G., Arraiol, A. … Wunderlich, J. (2005). Ranking protected areas in the Azores using standardised sampling of soil epigean arthropods. Biodiversity and Conservation, 14(9), 2029–2060. doi: 10.1007/s10531-004-4283-y

Bouché, M. B., & Al-Addan, F. (1997). Earthworms, water infiltration and soil stability: Some new assessments. Soil Biology and Biochemistry, 29(3–4), 441–452. doi: 10.1016/S0038-0717(96)00272-6

Bray, N., & Wickings, K. (2019). The roles of invertebrates in the urban soil microbiome. Frontiers in Ecology and Evolution, 7, 359. doi: 10.3389/fevo.2019.00359

Büchi, L., & Vuilleumier, S. (2014). Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. American Naturalist, 183(5), 612–624. doi:

Byrne, L. B., Bruns, M. A., & Kim, K. C. (2008). Ecosystem properties of urban land covers at the aboveground-belowground interface. Ecosystems, 11(7), 1065–1077. doi: 10.1007/s10021-008-9179-3

Byrne, L., & Bruns, M. (2004). The Effects of Lawn Management on Soil Microarthropods. Journal of Agricultural and Urban Entomology, 21, 151–156.

Capowiez, Y., Sammartino, S., & Michel, E. (2014). Burrow systems of endogeic earthworms: Effects of earthworm abundance and consequences for soil water infiltration. Pedobiologia, 57(4–6), 303–309. doi: 10.1016/j.pedobi.2014.04.001

Carreiro, M. M., & Tripler, C. E. (2005). Forest remnants along urban-rural gradients: Examining their potential for global change research. Ecosystems, 8(5), 568–582. doi: 10.1007/s10021-003-0172-6

Chen, G., Li, X., Liu, X., Chen, Y., Liang, X., Leng, J., … Huang, K. (2020). Global projections of future urban land expansion under shared socioeconomic pathways. Nature Communications, 11(1), 1–12. doi: 10.1038/s41467-020-14386-x

Collins, J., Kinzig, A., Grimm, N., Fagan, W. F., Hope, D., Wu, J., & Borer, E. T. (2000). A new urban ecology. American Scientist, 88(5), 416–425.

Decina, S. M., Ponette-González, A. G., & Rindy, J. E. (2020). Urban tree canopy effects on water quality via inputs to the urban ground surface. In: D. Levia, D. Carlyle-Moses, S. Iida, B. Michalzik, K. Nanko, & A. Tischer (Eds.), Forest-Water Interactions. Ecological Studies (Analysis and Synthesis), 240. (pp. 433–457). Springer, Cham. doi: 10.1007/978-3-030-26086-6_18

Decina, S. M., Templer, P. H., & Hutyra, L. R. (2018). Atmospheric inputs of nitrogen, carbon, and phosphorus across. Earth’s Future, 6(2), 134–148. doi: 10.1002/2017EF000653

Deichsel, R. (2006). Species change in an urban setting-ground and rove beetles (Coleoptera: Carabidae and Staphylinidae) in Berlin. Urban Ecosystems, 9(3), 161–178. doi: 10.1007/s11252-006-8588-3

Dennis, R. L. H., Hodgson, J. G., Grenyer, R., Shreeve, T. G., & Roy, D. B. (2004). Host plants and butterfly biology. Do host-plant strategies drive butterfly status? Ecological Entomology, 29(1), 12–26. doi: 10.1111/j.1365-2311.2004.00572.x

Devictor, V., Julliard, R., & Jiguet, F. (2008). Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos, 117(4), 507–514. doi: 10.1111/j.0030-1299.2008.16215.x

Dorendorf, J., Wilken, A., Eschenbach, A., & Jensen, K. (2015). Urban-induced changes in tree leaf litter accelerate decomposition. Ecological Processes, 4(1). doi: 10.1186/s13717-014-0026-5

Dray, S., & Legendre, P. (2008). Testing the species traits environment relationships: The fourth-corner problem revisited. Ecology, 89(12), 3400–3412. doi: 10.1890/08-0349.1

Duh, J.-D., Shandas, V., Chang, H., & George, L. A. (2008). Rates of urbanisation and the resiliency of air and water quality. Science of The Total Environment, 400(1–3), 238–256. doi: 10.1016/j.scitotenv.2008.05.002

Ehlers, W. (1975). Observations on earthworm channels and infiltration on tilled and untilled loess soil. Soil Science, 119(3), 242–249. doi: 10.1097/00010694-197503000-00010

Epp Schmidt, D. J., Kotze, D. J., Hornung, E., Setälä, H., Yesilonis, I., Szlavecz, K., … Yarwood, S. (2019). Metagenomics Reveals Bacterial and Archaeal Adaptation to Urban Land-Use: N Catabolism, Methanogenesis, and Nutrient Acquisition. Frontiers in Microbiology, 10, 2330. doi: 10.3389/fmicb.2019.02330

Epp Schmidt, D. J., Pouyat, R., Szlavecz, K., Setälä, H., Kotze, D. J., Yesilonis, I., … Yarwood, S. A. (2017). Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nature Ecology and Evolution, 1(5). doi: 10.1038/s41559-017-0123

Fanelli, G., Tescarollo, P., & Testi, A. (2006). Ecological indicators applied to urban and suburban floras. Ecological Indicators, 6(2), 444–457. 10.1016/j.ecolind.2005.06.002

Fehrenbach, H., Grahl, B., Giegrich, J., & Busch, M. (2015). Hemeroby as an impact category indicator for the integration of land use into life cycle (impact) assessment. International Journal of Life Cycle Assessment, 20(11), 1511–1527. doi: 10.1007/s11367-015-0955-y

Fernández, C., Acosta, F. J., Abellá, G., López, F., & Díaz, M. (2002). Complex edge effect fields as additive processes in patches of ecological systems. Ecological Modelling, 149(3), 273–283. doi: 10.1016/S0304-3800(01)00464-1

Gan, H., & Wickings, K. (2017). Soil ecological responses to pest management in golf turf vary with management intensity, pesticide identity, and application program. Agriculture, Ecosystems and Environment, 246, 66–77. doi: 10.1016/j.agee.2017.05.014

Geri, F., Amici, V., & Rocchini, D. (2010). Human activity impact on the heterogeneity of a Mediterranean landscape. Applied Geography, 30(3), 370–379. doi: 10.1016/j.apgeog.2009.10.006

Gongalsky, K. B. (2011). The spatial distribution of large soil invertebrates on burned areas in xerophilous ecosystems of the Black Sea coast of the Caucasus. Arid Ecosystems, 1(4), 260–266. doi: 10.1134/S2079096111040068

Griffiths, B., Faber, J., & Bloem, J. (2018). Applying soil health indicators to encourage sustainable soil use: The transition from scientific study to practical application. Sustainability, 10(9), 3021. doi: 10.3390/su10093021

Groffman, P. M., Avolio, M., Cavender-Bares, J., Bettez, N. D., Grove, J. M., Hall, S. J., … Trammell, T. L. E. (2017). Ecological homogenization of residential macrosystems. Nature Ecology and Evolution, 1(7), 1–3. doi: 10.1038/s41559-017-0191

Grzesiak, M. T. (2009). Impact of soil compaction on root architecture, leaf water status, gas exchange and growth of maize and triticale seedlings. Plant Root, 3, 10–16. doi: 10.3117/plantroot.3.10

Hall, S. J., Learned, J., Ruddell, B., Larson, K. L., Cavender-Bares, J., Bettez, N., … Trammell, T. L. E. (2016). Convergence of microclimate in residential landscapes across diverse cities in the United States. Landscape Ecology, 31(1), 101–117. doi: 10.1007/s10980-015-0297-y

Hill, M. O., Roy, D. B., & Thompson, K. (2002). Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. Journal of Applied Ecology, 39(5), 708–720. doi: 10.1046/j.1365-2664.2002.00746.x

Hill, T. C. J., Walsh, K. A., Harris, J. A., & Moffett, B. F. (2003). Using ecological diversity measures with bacterial communities. FEMS Microbiology Ecology, 43(1), 1–11. doi: 10.1016/S0168-6496(02)00449-X

Hutchinson, G. E. (1957). Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22(0), 415–427. doi: 10.1101/sqb.1957.022.01.039

Hutchinson, G. E. (1961). The Paradox of the Plankton. The American Naturalist, 95(882), 137–145. doi: 10.1086/282171

Jalas, J. (1955). Hemerobe und hemerochore Pflanzenarten. Ein terminologischer Reformversuch. Acta Societas Flora Fauna Fennica, 72, 1–15.

Jia, Z., Li, S., & Wang, L. (2018). Assessment of soil heavy metals for eco-environment and human health in a rapidly urbanization area of the upper Yangtze Basin. Scientific Reports, 8(1), 1–14. doi: 10.1038/s41598-018-21569-6

Joimel, S., Cortet, J., Jolivet, C. C., Saby, N. P. A., Chenot, E. D., Branchu, P., … Schwartz, C. (2016). Physico-chemical characteristics of topsoil for contrasted forest, agricultural, urban and industrial land uses in France. Science of the Total Environment, 545–546, 40–47. doi: 10.1016/j.scitotenv.2015.12.035

Joimel, S., Schwartz, C., Hedde, M., Kiyota, S., Krogh, P. H., Nahmani, J., … Cortet, J. (2017). Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality. Science of the Total Environment, 584–585, 614–621. doi: 10.1016/j.scitotenv.2017.01.086

Jones, E. L., & Leather, S. R. (2012). Invertebrates in urban areas: A review. European Journal of Entomology, 109(4), 463–478. doi: 10.14411/eje.2012.060

Jouquet, P., Podwojewski, P., Bottinelli, N., Mathieu, J., Ricoy, M., Orange, D., … Valentin, C. (2008). Above-ground earthworm casts affect water runoff and soil erosion in Northern Vietnam. Catena, 74(1), 13–21. doi: 10.1016/j.catena.2007.12.006

Julliard, R., Clavel, J., Devictor, V., Jiguet, F., & Couvet, D. (2006). Spatial segregation of specialists and generalists in bird communities. Ecology Letters, 9(11), 1237–1244. doi: 10.1111/j.1461-0248.2006.00977.x

Katayama, N., Amano, T., Naoe, S., Yamakita, T., Komatsu, I., Takagawa, S., … Miyashita, T. (2014). Landscape Heterogeneity–Biodiversity Relationship: Effect of Range Size. PLoS ONE, 9(3), e93359. doi: 10.1371/journal.pone.0093359

Knop, E. (2016). Biotic homogenization of three insect groups due to urbanization. Global Change Biology, 22(1), 228–236. doi: 10.1111/gcb.13091

Kowarik, I. (1990). Some responses of flora and vegetation to urbanization in Central Europe. In: H. Sukopp, S. Hejny, & Kowarik I. (Eds.), Plants and plant communities in the urban environment (pp. 45–74). SPB Academic Publishing, The Hague.

Kowarik, I. (2020). Herbert Sukopp – an inspiring pioneer in the field of urban ecology. Urban Ecosystems, 23, 1–11. doi: 10.1007/s11252-020-00983-7

Kunah, O. M., Zelenko, Y. V., Fedushko, M. P., Babchenko, A. V., Sirovatko, V. O., & Zhukov, O. V. (2019). The temporal dynamics of readily available soil moisture for plants in the technosols of the Nikopol Manganese Ore Basin. Biosystems Diversity, 27(2), 156–162. doi: 10.15421/011921

Kunakh, O., & Kovalenko, D. (2019). Fitting Competing Models of the Population Abundance Distribution: Land Snails from Nikopol Manganese Ore Basin Technosols. Ekologia Bratislava, 38(4), 367–381. doi: 10.2478/eko-2019-0027

Kunakh, O. M., Yorkina, N. V., Zhukov, O. V., Turovtseva, N. M., Bredikhina, Y. L., & Logvina-Byk, T. A. (2020). Recreation and terrain effect on the spatial variation of the apparent soil electrical conductivity in an urban park. Biosystems Diversity, 28(1), 3–8. doi: 10.15421/012001

Kunakh, O. N., Kramarenko, S. S., Zhukov, A. V., Kramarenko, A. S., & Yorkina, N. V. (2018). Fitting competing models and evaluation of model parameters of the abundance distribution of the land snail Vallonia pulchella (Pulmonata, Valloniidae). Regulatory Mechanisms in Biosystems, 9(2), 198–202. doi: 10.15421/021829

Kunakh, O. N., Kramarenko, S. S., Zhukov, A. V., Zadorozhnaya, G. A., & Kramarenko, A. S. (2018). Intra-population spatial structure of the land snail Vallonia pulchella (Müller, 1774) (Gastropoda; Pulmonata; Valloniidae). Ruthenica, 28(3), 91–99.

Lizée, M. H., Mauffrey, J. F., Tatoni, T., & Deschamps-Cottin, M. (2011). Monitoring urban environments on the basis of biological traits. Ecological Indicators, 11(2), 353–361. doi: 10.1016/j.ecolind.2010.06.003

Magura, T., Lövei, G. L., & Tóthmérész, B. (2010). Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Global Ecology and Biogeography, 19(1), 16–26. doi: 10.1111/j.1466-8238.2009.00499.x

Magura, T., Nagy, D., & Tóthmérész, B. (2013). Rove beetles respond heterogeneously to urbanization. Journal of Insect Conservation, 17(4), 715–724. doi: 10.1007/s10841-013-9555-y

Martinez, N. G., Bettez, N. D., & Groffman, P. M. (2014). Sources of Variation in Home Lawn Soil Nitrogen Dynamics. Journal of Environmental Quality, 43(6), 2146–2151. doi: 10.2134/jeq2014.03.0103

Maslikova, K. P. (2018). Eсomorphic structure of the soil macrofauna communities of technosols of the Nikopol Manganese Ore Basin. Biosystems Diversity, 26(2), 85–91. doi: 10.15421/011813

McDonnell, M. J., & Pickett, S. T. A. (1990). Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology, 71(4), 1232–1237. doi: 10.2307/1938259

McDonnell, M., Pickett, S., Groffman, P., Bohlen, P., Pouyat, R., Zipperer, W., … & Medley, K. (1997). Ecosystem processes along an urban-to-rural gradient. Urban Ecosystems, 1(1), 21–36. doi: 10.1023/A:1014359024275

Mcintyre, N. E., Knowles-Yánez, K., & Hope, D. (2000). Urban ecology as an interdisciplinary field: differences in the use of “urban” between the social and natural sciences. Urban Ecosystems, 4(1), 5–24. doi: 10.1023/A:1009540018553

Medvedev, V. V. (2009). Soil penetration resistance and penetrographs in studies of tillage technologies. Eurasian Soil Science, 42(3), 299–309. doi: 10.1134/S1064229309030077

Melliger, R. L., Rusterholz, H. P., & Baur, B. (2017). Ecosystem functioning in cities: Combined effects of urbanisation and forest size on early-stage leaf litter decomposition of European beech (Fagus sylvatica L.). Urban Forestry and Urban Greening, 28, 88–96. doi: 10.1016/j.ufug.2017.10.009

Montalvo, J., Ruiz-Labrador, E., Montoya-Bernabéu, P., & Acosta-Gallo, B. (2019). Rural–urban gradients and human population dynamics. Sustainability, 11(11), 3107. doi: 10.3390/su11113107

Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., & Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution, 28(3), 167–177. doi: 10.1016/j.tree.2012.10.004

Murata, T., & Kawai, N. (2018). Degradation of the urban ecosystem function due to soil sealing: involvement in the heat island phenomenon and hydrologic cycle in the Tokyo metropolitan area. Soil Science and Plant Nutrition, 64(2), 145–155. doi: 10.1080/00380768.2018.1439342

Nagy, D. D., Magura, T., Horváth, R., Debnár, Z., & Tóthmérész, B. (2018). Arthropod assemblages and functional responses along an urbanization gradient: A trait-based multi-taxa approach. Urban Forestry and Urban Greening, 30, 157–168. doi: 10.1016/j.ufug.2018.01.002

Nahmani, J., & Lavelle, P. (2002). Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France. European Journal of Soil Biology, 38(3–4), 297–300. doi: 10.1016/S1164-5563(02)01169-X

Nemergut, D. R., Schmidt, S. S. K., Fukami, T., O’Neill, S. P., Bilinski, T. M., Stanish, L. F., … Gallagher, E. D. (2014). Soil Type Is the Primary Determinant of the Composition of the Total and Active Bacterial Communities in Arable Soils. Soil Biology and Biochemistry, 8(3), 1–8. doi: 10.1128/AEM.69.3.1800

Niemelä, J. (1999). Ecology and urban planning. Biodiversity and Conservation, 8(1), 119–131. doi:

Niemelä, J., & Kotze, D. J. (2009). Carabid beetle assemblages along urban to rural gradients: A review. Landscape and Urban Planning, 92(2), 65–71. doi: 10.1016/j.landurbplan.2009.05.016

Niemelä, J., Kotze, D. J., Venn, S., Penev, L., Stoyanov, I., Spence, J., Hartley, D., & Montes de Oca, E. (2002). Carabid beetle assemblages (Coleoptera, Carabidae) across urban-rural gradients: An international comparison. Landscape Ecology, 17(5), 387–401. doi: 10.1023/A:1021270121630

Niemelä, J., Kotze, J., Ashworth, A., Brandmayr, P., Desender, K., New, T., … Spence, J. (2000). The search for common anthropogenic impacts on biodiversity: A global network. Journal of Insect Conservation, 4(1), 3–9. doi: 10.1023/A:1009655127440

Olden, J. D., Poff, N. L. R., & McKinney, M. L. (2006). Forecasting faunal and floral homogenization associated with human population geography in North America. Biological Conservation, 127(3), 261–271. doi: 10.1016/j.biocon.2005.04.027

Pakhomov, A. E., Kunakh, O. M., Zhukov, A. V., & Baliuk, Y. A. (2013). Spatial organisation of an ecological niche of the urbozem mesofauna. Visnyk of Dnipropetrovsk University. Biology, Ecology, 21(1), 51–57.

Paoletti, M., & Bressan, M. (1996). Soil invertebrates as bioindicators of human disturbance. Critical Reviews in Plant Sciences, 15(1), 21–62. doi: 10.1080/07352689609701935

Paoletti, M. G. (1999a). The role of earthworms for assessment of sustainability and as bioindicators. Agriculture, Ecosystems and Environment, 74(1–3), 137–155. doi: 10.1016/S0167-8809(99)00034-1

Paoletti, M. G. (1999b). Using bioindicators based on biodiversity to assess landscape sustainability. Agriculture, Ecosystems and Environment, 74(1–3), 1–18. doi: 10.1016/S0167-8809(99)00027-4

Paoletti, M. G., & Hassall, M. (1999). Woodlice (Isopoda: Oniscidea): Their potential for assessing sustainability and use as bioindicators. Agriculture, Ecosystems and Environment, 74(1–3), 157–165. doi: 10.1016/S0167-8809(99)00035-3

Paoletti, M. G., Osler, G. H. R., Kinnear, A., Black, D. G., Thomson, L. J., Tsitsilas, A., … D’Inca, A. (2007). Detritivores as indicators of landscape stress and soil degradation. Australian Journal of Experimental Agriculture, 47(4), 412. doi: 10.1071/EA05297

Pavao-Zuckerman, M. A. (2008). The nature of urban soils and their role in ecological restoration in cities. Restoration Ecology, 16(4), 642–649. doi: 10.1111/j.1526-100X.2008.00486.x

Pavao-Zuckerman, M. A., & Coleman, D. C. (2007). Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community. Applied Soil Ecology, 35(2), 329–339. doi: 10.1016/j.apsoil.2006.07.008

Peck, D. C. (2009). Comparative impacts of white grub (Coleoptera: Scarabaeidae) control products on the abundance of non-target soil-active arthropods in turfgrass. Pedobiologia, 52(5), 287–299. doi: 10.1016/j.pedobi.2008.10.003

Pey, B., Nahmani, J., Auclerc, A., Capowiez, Y., Cluzeau, D., Cortet, J. Ô., … Hedde, M. (2014). Current use of and future needs for soil invertebrate functional traits in community ecology. Basic and Applied Ecology, 15(3), 194–206. doi: 10.1016/j.baae.2014.03.007

Pouyat, R. V., Szlavecz, K., Yesilonis, I. D., Wong, C. P., Murawski, L., Marra, P., Casey, R. E., & Lev, S. (2015). Multi-scale assessment of metal contamination in residential soil and soil fauna: A case study in the Baltimore-Washington metropolitan region, USA. Landscape and Urban Planning, 142, 7–17. doi: 10.1016/j.landurbplan.2015.05.001

Pouyat, Richard V., & Carreiro, M. M. (2003). Controls on mass loss and nitrogen dynamics of oak leaf litter along an urban-rural land-use gradient. Oecologia, 135(2), 288–298. doi: 10.1007/s00442-003-1190-y

Pouyat, R. V., Setälä, H., Szlavecz, K., Yesilonis, I. D., Cilliers, S., Hornung, E., … Whitlow, T. H. (2017). Introducing GLUSEEN: a new open access and experimental network in urban soil ecology. Journal of Urban Ecology, 3(1), jux002. doi: 10.1093/JUE/JUX002

Pouyat, R. V., Yesilonis, I. D., Dombos, M., Szlavecz, K., Setälä, H., Cilliers, S., … Yarwood, S. (2015). A global comparison of surface soil characteristics across five cities: A test of the urban ecosystem convergence hypothesis. Soil Science, 180(4–5), 136–145. doi: 10.1097/SS.0000000000000125

Rebele, F. (1994). Urban ecology and special features of urban ecosystems. Global Ecology and Biogeography Letters, 4(6), 173–187. doi: 10.2307/2997649

Reif, J., Marhoul, P., & Koptík, J. (2013). Bird communities in habitats along a successional gradient: Divergent patterns of species richness, specialization and threat. Basic and Applied Ecology, 14(5), 423–431. doi: 10.1016/j.baae.2013.05.007

Rochefort, S., Therrien, F., Shetlar, D. J., & Brodeur, J. (2006). Species diversity and seasonal abundance of Collembola in turfgrass ecosystems of North America. Pedobiologia, 50(1), 61–68. doi: 10.1016/j.pedobi.2005.10.007

Salminen, J., van Gestel, C. A. M., & Oksanen, J. (2001). Pollution-induced community tolerance and functional redundancy in a decomposer food web in metal-stressed soil. Environmental Toxicology and Chemistry, 20(10), 2287–2295. doi: 10.1002/etc.5620201022

Santorufo, L., Van Gestel, C. A. M., Rocco, A., & Maisto, G. (2012). Soil invertebrates as bioindicators of urban soil quality. Environmental Pollution, 161, 57–63. doi: 10.1016/j.envpol.2011.09.042

Sarah, P., Zhevelev, H. M., & Oz, A. (2015). Urban Park Soil and Vegetation: Effects of Natural and Anthropogenic Factors. Pedosphere, 25(3), 392–404. doi: 10.1016/S1002-0160(15)30007-2

Schleupner, C., & Link, P. M. (2008). Potential impacts on important bird habitats in Eiderstedt (Schleswig-Holstein) caused by agricultural land use changes. Applied Geography, 28(4), 237–247. doi: 10.1016/j.apgeog.2008.04.001

Schleupner, C., & Schneider, U. A. (2013). Allocation of European wetland restoration options for systematic conservation planning. Land Use Policy, 30(1), 604–614. doi: 10.1016/j.landusepol.2012.05.008

Schrader, S., & Böning, M. (2006). Soil formation on green roofs and its contribution to urban biodiversity with emphasis on Collembolans. Pedobiologia, 50(4), 347–356. doi: 10.1016/j.pedobi.2006.06.003

Schwartz, M. W., Thorne, J. H., & Viers, J. H. (2006). Biotic homogenization of the California flora in urban and urbanizing regions. Biological Conservation, 127(3), 282–291. doi: 10.1016/j.biocon.2005.05.017

Shi, G., Shan, J., Ding, L., Ye, P., Li, Y., & Jiang, N. (2019). Urban Road Network Expansion and Its Driving Variables: A Case Study of Nanjing City. International Journal of Environmental Research and Public Health, 16(13), 2318. doi: 10.3390/ijerph16132318

Simon, E., Braun, M., Vidic, A., Bogyó, D., Fábián, I., & Tóthmérész, B. (2011). Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna. Environmental Pollution, 159(5), 1229–1233. doi: 10.1016/j.envpol.2011.01.034

Simon, E., Puky, M., Braun, M., & Tóthmérész, B. (2012). Assessment of the effects of urbanization on trace elements of toe bones. Environmental Monitoring and Assessment, 184(9), 5749–5754. doi: 10.1007/s10661-011-2378-y

Simon, E., Vidic, A., Braun, M., Fábián, I., & Tóthmérész, B. (2013). Trace element concentrations in soils along urbanization gradients in the city of Wien, Austria. Environmental Science and Pollution Research, 20(2), 917–924. doi: 10.1007/s11356-012-1091-x

Smagin, A. V., Azovtseva, N. A., Smagina, M. V., Stepanov, A. L., Myagkova, A. D., & Kurbatova, A. S. (2006). Criteria and methods to assess the ecological status of soils in relation to the landscaping of urban territories. Eurasian Soil Science, 39(5), 539–551. doi: 10.1134/S1064229306050115

Smart, S. M., Thompson, K., Marrs, R. H., Le Duc, M. G., Maskell, L. C., & Firbank, L. G. (2006). Biotic homogenization and changes in species diversity across human-modified ecosystems. Proceedings of the Royal Society B: Biological Sciences, 273(1601), 2659–2665. doi: 10.1098/rspb.2006.3630

Smetak, K. M., Johnson-Maynard, J. L., & Lloyd, J. E. (2007). Earthworm population density and diversity in different-aged urban systems. Applied Soil Ecology, 37(1–2), 161–168. doi:

Smith, J., Chapman, A., & Eggleton, P. (2006). Baseline biodiversity surveys of the soil macrofauna of London’s green spaces. Urban Ecosystems, 9(4), 337–349. doi: 10.1007/s11252-006-0001-8

Sousa, W. P. (1984). The Role of Disturbance in Natural Communities. Annual Review of Ecology and Systematics, 15, 353–391. doi: 10.2307/2096953

Souty-Grosset, C., Badenhausser, I., Reynolds, J. D., & Morel, A. (2005). Investigations on the potential of woodlice as bioindicators of grassland habitat quality. European Journal of Soil Biology, 41(3–4), 109–116. doi: 10.1016/j.ejsobi.2005.09.009

Steinhardt, U., Herzog, F., Lausch, A., Miller, E., & Lehmann, S. (1999). Hemeroby index for landscape monitoring and evaluation. In Y. A. Pykh (Ed.), Environmental Indices – System Analysis Approach (pp. 237–254). EOLSS Publishing, Oxford.

Sukopp, H. (1969). Der Einfluss des Menschen auf die Vegetation. Vegetatio Acta Geobotanica, 17(1), 360–371. doi: 10.1007/BF01965917

Tarasov, V. V. (2012). Flora of Dnipropetrovsk and Zaporizhia regions (A. P. Travleev (ed.)). Lira, Dnipropetrovsk (in Ukranian).

Testi, A., Bisceglie, S., Guidotti, S., & Fanelli, G. (2009). Detecting river environmental quality through plant and macroinvertebrate bioindicators in the Aniene River (Central Italy). Aquatic Ecology, 43(2), 477–486. doi: 10.1007/s10452-008-9205-8

Thuiller, W., Lavorel, S., Midgley, G., Lavergne, S., & Rebelo, T. (2004). Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology, 85(6), 1688–1699. doi: 10.1890/03-0148

Tian, Y., Liu, B., Hu, Y., Xu, Q., Qu, M., & Xu, D. (2020). Spatio-temporal land-use changes and the response in landscape pattern to hemeroby in a resource-based city. ISPRS International Journal of Geo-Information, 9(1), 20. doi: 10.3390/ijgi9010020

Tóth, Z., & Hornung, E. (2019). Taxonomic and functional response of Millipedes (Diplopoda) to urban soil disturbance in a metropolitan area. Insects, 11(1), 25. doi: 10.3390/insects11010025

Tóth, Z., Szlavecz, K., Epp Schmidt, D. J., Hornung, E., Setälä, H., Yesilonis, I. D., Kotze, D. J., Dombos, M., Pouyat, R., Mishra, S., Cilliers, S., Yarwood, S., & Csuzdi, C. (2020). Earthworm assemblages in urban habitats across biogeographical regions. Applied Soil Ecology, 151. doi: 10.1016/j.apsoil.2020.103530

Trammell, T. L. E., Pataki, D. E., Pouyat, R. V., Groffman, P. M., Rosier, C., Bettez, N., … Steele, M. (2019). Urban soil carbon and nitrogen converge at a continental scale. Ecological Monographs. doi: 10.1002/ecm.1401

Tuf, I. H., & Tufova, J. (2008). Proposal of ecological classification of centipede, millipede and terrestrial isopod faunas for evaluation of habitat quality in Czech Republic. Časopis Slezského Zemského Muzea. Série A, Vědy Přírodní, 57, 37–44.

van Rensburg, B. J., Peacock, D. S., & Robertson, M. P. (2009). Biotic homogenization and alien bird species along an urban gradient in South Africa. Landscape and Urban Planning, 92(3–4), 233–241. doi: 10.1016/j.landurbplan.2009.05.002

Vergnes, A., Viol, I. Le, & Clergeau, P. (2012). Green corridors in urban landscapes affect the arthropod communities of domestic gardens. Biological Conservation, 145(1), 171–178. doi: 10.1016/j.biocon.2011.11.002

Walz, U., & Stein, C. (2014). Indicators of hemeroby for the monitoring of landscapes in Germany. Journal for Nature Conservation, 22(3), 279–289. doi: 10.1016/j.jnc.2014.01.007

Wiens, J. A. (1989). The Ecology of Bird Communities, Vols. 1 and 2. Cambridge Studies in Ecology. Cambridge University Press, Cambridge, UK.

Winter, S. (2012). Forest naturalness assessment as a component of biodiversity monitoring and conservation management. Forestry: An International Journal of Forest Research, 85(2), 293–304. doi: 10.1093/forestry/cps004

Yorkina, N., Maslikova, K., Kunah, O., & Zhukov, O. (2018). Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol manganese ore basin, Ukraine). Ecologica Montenegrina, 17, 29–45.

Yorkina, N., Zhukov, O., & Chromysheva, O. (2019). Potential possibilities of soil mesofauna usage for biodiagnostics of soil contamination by heavy metals. Ekologia Bratislava, 38(1), 1–10. doi: 10.2478/eko-2019-0001

Yorkina, N. V., Kunakh, O. M., & Budakova, V. S. (2019). Ecological niche packing and spatial organisation of the urban park macrofauna comminity | Agrology. Agrology, 2(4), 209‒218. doi: 10.32819/019030

Zhukov, O., Kunah, O., Dubinina, Y., & Novikova, V. (2018). The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekologia Bratislava, 37(4), 301–327. doi: 10.2478/eko-2018-0023

Zhukov, O. V. (2009). The ecomorphic analysis of the soil animals consortia. Svidler press, Dnipropetrovsk (in Ukranian).

Zhukov, O. V., Kovalenko, D. V., Kramarenko, S. S., & Kramarenko, A. S. (2019). Analysis of the spatial distribution of the ecological niche of the land snail Brephulopsis cylindrica (Stylommatophora, Enidae) in technosols. Biosystems Diversity, 27(1), 62–68. doi: 10.15421/011910

Zhukov, O. V., Kunah, O. M., & Dubinina, Y. Y. (2017). Sensitivity and resistance of communities: Evaluation on the example of the influence of edaphic, vegetation and spatial factors on soil macrofauna. Biosystems Diversity, 25(4). doi: 10.15421/011750

How to Cite
Yorkina, N., & Budakova, V. (2020). The hemeroby of soil macrofauna: spatial-ecological transformation of the communty at the ecosystem level. Agrology, 3(2), 104-121.
Оriginal researches