Ecological and floristic characteristics of Cyanophyceae of Pryazovskyi National Nature Park

  • L. I. Arabadzhy-Tipenko Bogdan Khmelnitsky Melitopol State Pedagogical University, Melitopol, Ukraine
Keywords: biological diversity; nature protection; monitoring; taxonomic structure; ecological gradient; blue-green algae.

Abstract

The north-western coast of the Sea of Azov is a set of natural systems that are characterized by a high level of biological diversity, economic value and have a high recreational potential. The harmonization of nature protection goals, optimization of economic efficiency and maintenance of recreational value are extremely complex scientific and scientific-practical tasks. The development of a strategy for the rational use of nature should be based on the study of natural complexes that are within the protected areas as reference areas. In addition to the role of markers of the level of biological diversity, the objects of the nature reserve fund act as factors of functional stability of natural complexes in general. Therefore, the study of ecological features of Cyanoprokaryota Priazovsky National Nature Park is an important scientific problem. There were 9 experimental landfills on the territory of Priazovsky Park, which covered steppe areas or slopes, salt marshes, coastal sandy soils (bars) and reservoirs (rivers, lakes, estuaries, sea bays, lagoons). As a result of research, 124 species of cyanoprokaryotes were identified, which include 127 intraspecific taxa. According to the systematic structure, the found species of cyanoprokaryotes belong to the class Cyanophyceae Sachs, within which 3 subclasses, 6 orders, 18 families and 33 genera are represented. The subclass Oscillatoriophycidae is the most diverse in terms of the number of species, which includes 62 species, or 49% of the regional flora of cyanoprokaryotes. Fewer species belong to the subclass Synechococcophycidae (38 species). The subclass Nostocophycidae (27 species) is the least diverse in terms of species. Cluster analysis by number of species in subclasses indicates that cenoses can be divided into two groups: steppe groups and salt marshes on the one hand, and groups on sandy soils and water groups on the other. The groups of salt water and sandy soils are the most similar. The number of genus in a family among subclasses is almost constant, equal to 1.8. The saturation of family species is highest for the subclass Synechococcophycidae and is 7.6. For subclasses Nostocophycidae and Oscillatoriophycidae this indicator is almost identical and is 6.8–6.9. The genus coefficient is the largest for the subclass Synechococcophycidae and is 4.2. This figure is lower for Nostocophycidae and is 3.9. For Oscillatoriophycidae, the birth rate is 3.6. Taxonomic diversity of flora at the genus level in terms of the number of taxa is characterized by a stable level, except for freshwater, the flora of Cyanophyceae which is represented by a much smaller number of genera compared to other types of biogeocenoses. According to the Shannon index, diversity increases in the series steppe → salt marsh → psammophytic stations → salt water and decreases sharply in freshwater. According to Pielou, the diversity grows within this range and reaches the highest level in freshwater. Prospects for further research include assessing the systematic nature of the taxonomic structure of flora depending on the type of ecosystems, the study of ecototype groups of Cyanophyceae in the context of their preferences for habitat types and salinity conditions. the flora of Cyanophyceae is represented by a much smaller number of genera compared to other types of biogeocenoses. According to the Shannon index, diversity increases in the series steppe → salt marsh → psammophytic stations → salt water and decreases sharply in freshwater. According to Pielow, the diversity grows within this range and reaches the highest level in freshwater. Prospects for further research include assessing the systematic nature of the taxonomic structure of flora depending on the type of ecosystems, the study of ecototype groups of Cyanophyceae in the context of their preferences for habitat types and salinity conditions. the flora of Cyanophyceae is represented by a much smaller number of genera compared to other types of biogeocenoses. According to the Shannon index, diversity increases in the series steppe → salt marsh → psammophytic stations → salt water and decreases sharply in freshwater. According to Pielow, the diversity grows wi-thin this range and reaches the highest level in freshwater. Prospects for further research include assessing the systematic nature of the taxonomic structure of flora depending on the type of ecosystems, the study of ecototype groups of Cyanophyceae in the context of their preferences for habitat types and salinity conditions. According to Pielow, the diversity grows within this range and reaches the highest level in freshwater. Prospects for further research include assessing the systematic nature of the taxonomic structure of flora depending on the type of ecosystems, the study of ecototype groups of Cyanophyceae in the context of their preferences for habitat types and salinity conditions.

References

Abdulqader, G., Barsanti, L., & Tredici, M. R. (2000). Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu. Journal of Applied Phycology, 12(3–5), 493–498. doi: 10.1023/A:1008177925799

Achbergerová, L., & Nahálka, J. (2011). Polyphosphate ‒ an ancient energy source and active metabolic regulator. In Microbial Cell Factories, 10(1), 63. doi: 10.1186/1475-2859-10-63

Ahmed, A., Hemida, M., & Ohyam, T. (2014). Nitrogen Fixing Cyanobacteria: Future Prospect. In T. Ohyama (Ed.), Advances in Biology and Ecology of Nitrogen Fixation. InTech. 10.5772/56995

Angermayr, S. A., Hellingwerf, K. J., Lindblad, P., & Teixeira de Mattos, M. J. (2009). Energy biotechnology with cyanobacteria. In Current Opinion in Biotechnology, 20(3), 257–263. doi: 10.1016/j.copbio.2009.05.011

Aráoz, R., Molgó, J., & Tandeau de Marsac, N. (2010). Neurotoxic cyanobacterial toxins. In Toxicon, 56(5), 813–828. doi: 10.1016/j.toxicon.2009.07.036

Archibald, J. M. (2009). The Puzzle of Plastid Evolution. In Current Biology, 19(2). doi: 10.1016/j.cub.2008.11.067

Arrhenius, O. (1921). Species and Area. The Journal of Ecology, 9(1), 95. doi: 10.2307/2255763

Avila-Leon, I., Chuei Matsudo, M., Sato, S., & de Carvalho, J. C. M. (2012). Arthrospira platensis biomass with high protein content cultivated in continuous process using urea as nitrogen source. Journal of Applied Microbiology, 112(6), 1086–1094. doi: 10.1111/j.1365-2672.2012.05303.x

Backer, L. C., Manassaram-Baptiste, D., LePrell, R., & Bolton, B. (2015). Cyanobacteria and algae blooms: Review of health and environmental data from the harmful algal bloom-related illness surveillance system (HABISS) 2007–2011. Toxins, 7(4), 1048–1064. doi: 10.3390/toxins7041048

Badri, H., Monsieurs, P., Coninx, I., Wattiez, R., & Leys, N. (2015). Molecular investigation of the radiation resistance of edible cyanobacterium Arthrospira sp. PCC 8005. MicrobiologyOpen, 4(2), 187–207. doi: 10.1002/mbo3.229

Barinova, S. S., Medvedeva, L. A., & Anisimova, O. V. (2006). Biodiversity of algae – indicators of environment. Pilies Studio, Tel-Aviv.

Becher, P. G., Beuchat, J., Gademann, K., & Jüttner, F. (2005). Nostocarboline: Isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78-12A. Journal of Natural Products, 68(12), 1793–1795. doi: 10.1021/np050312l

Belgard, A. L. (1950). Forest vegetation of South–Eeast part of the Ukraine. Kyiv University Press, Kyiv (in Russian).

Belgard, A. L. (1971). Steppe Forestry. Forest Industry, Moscow (in Russian).

Bláha, L., Babica, P., & Maršálek, B. (2009). Toxins produced in cyanobacterial water blooms – toxicity and risks. Interdisciplinary Toxicology, 2(2), 36–41. doi: 10.2478/v10102-009-0006-2

Boopathi, T., & Ki, J. S. (2014). Impact of environmental factors on the regulation of cyanotoxin production. In Toxins, 6(7), 1951–1978. MDPI AG. doi: 10.3390/toxins6071951

Bothe, H., Schmitz, O., Yates, M. G., & Newton, W. E. (2010). Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria. Microbiology and Molecular Biology Reviews, 74(4), 529–551. doi: 10.1128/mmbr.00033-10

Boyer, G. L. (2008). Cyanobacterial toxins in New York and the Lower Great Lakes ecosystems. In: H. K.Hudnell (Eds.), Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs (pp. 153‒165), Springer. doi: 10.1007/978-0-387-75865-7_7

Brookes, J. D., & Carey, C. C. (2011). Ecology: Resilience to blooms. In Science, 334(6052), 46–47. doi: 10.1126/science.1207349

Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P., & Brookes, J. D. (2012). Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research, 46(5), 1394–1407. doi: 10.1016/j.watres.2011.12.016

Casamatta, D. A., & Vis, M. L. (2003). Ecological role of phormidium retzii (cyanobacteria) in a small ohio woodland stream. Journal of Freshwater Ecology, 18(3), 395–404. doi: 10.1080/02705060.2003.9663975

Červený, J., Sinetova, M. A., Zavřel, T., & Los, D. A. (2015). Mechanisms of high temperature resistance of Synechocystis sp. PCC 6803: An Impact of histidine kinase 34. Life, 5(1), 676–699. doi: 10.3390/life5010676

Coad, P., Cathers, B., Ball, J. E., & Kadluczka, R. (2014). Proactive management of estuarine algal blooms using an automated monitoring buoy coupled with an artificial neural network. Environmental Modelling and Software, 61, 393–409. doi: 10.1016/j.envsoft.2014.07.011

Codd, G. A., Morrison, L. F., & Metcalf, J. S. (2005). Cyanobacterial toxins: Risk management for health protection. Toxicology and Applied Pharmacology, 203(3 SPEC. ISS.), 264–272. doi: 10.1016/j.taap.2004.02.016

Comte, K., Coursin, T., & Carre-Mlouka, A. (2013). A new genotype in the genus Arthrospira (Oscillatoriales, cyanobacteria) revealed by a mosaic-like structure of the 16S-23SrRNA intergenic spacer region in strain PCC 9901. Phycologia, 52(4), 333–337. doi: 10.2216/12-063.1

Corbel, S., Mougin, C., & Bouaïcha, N. (2014). Cyanobacterial toxins: Modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere, 96, 1–15. doi: 10.1016/j.chemosphere.2013.07.056

Cox, P. A., Banack, S. A., Murch, S. J., Rasmussen, U., Tien, G., Bidigare, R. R., … Bergman, B. (2005). Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proceedings of the National Academy of Sciences of the United States of America, 102(14), 5074–5078. doi: 10.1073/pnas.0501526102

Cusick, K. D., & Sayler, G. S. (2013). An overview on the marine neurotoxin, saxitoxin: Genetics, moleculartargets, methods of detection and ecological functions. Marine Drugs, 11(4), 991–1018. doi: 10.3390/md11040991

Davidson, K., Gowen, R. J., Harrison, P. J., Fleming, L. E., Hoagland, P., & Moschonas, G. (2014). Anthropogenic nutrients and harmful algae in coastal waters. Journal of Environmental Management, 146, 206–216. doi: 10.1016/j.jenvman.2014.07.002

Dubina, D. V. (1990). Analysis of the flora of the flooded littoral landscape of the river Dnieper. Ukrainian Botanic Journal, 47(1), 25–30 (in Russian).

Esteban, A., Sidler, W., Frank, G., Füglistaller, P., Rümbeli, R., & Zuber, H. (1990). Isolation and Characterization of the Allophycocyanin Complexes of the Cyanobacterium Mastigocladus laminosus. In M. Baltscheffsky (Ed.), Current Research in Photosynthesis (pp. 1053–1056). Springer, Netherlands. doi: 10.1007/978-94-009-0511-5_243

Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L. L., Jiao, N., … Martiny, A. C. (2013). Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9824–9829. doi: 10.1073/pnas.1307701110

Frei, R., Gaucher, C., Poulton, S. W., & Canfield, D. E. (2009). Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 461(7261), 250–253. doi: 10.1038/nature08266

Fuchsman, C. A., Palevsky, H. I., Widner, B., Duffy, M., Carlson, M. C. G., Neibauer, J. A., … & Rocap, G. (2019). Cyanobacteria and cyanophage contributions to carbon and nitrogen cycling in an oligotrophic oxygen-deficient zone. ISME Journal, 13(11), 2714–2726. doi: 10.1038/s41396-019-0452-6

Furmaniak, M. A., Misztak, A. E., Franczuk, M. D., Wilmotte, A., Waleron, M., & Waleron, K. F. (2017). Edible cyanobacterial genus Arthrospira: Actual state of the art in cultivation methods, genetics, and application in medicine. Frontiers in Microbiology, 8(DEC). doi: 10.3389/fmicb.2017.02541

Gaitán, J. J., Bran, D. E., Oliva, G. E., Aguiar, M. R., Buono, G. G., Ferrante, D., … Maestre, F. T. (2018). Aridity and Overgrazing Have Convergent Effects on Ecosystem Structure and Functioning in Patagonian Rangelands. Land Degradation and Development, 29(2), 210–218. doi: 10.1002/ldr.2694

Gehringer, M. M., Adler, L., Roberts, A. A., Moffitt, M. C., Mihali, T. K., Mills, T. J. T., … Neilan, B. A. (2012). Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp. ISME Journal, 6(10), 1834–1847. doi: 10.1038/ismej.2012.25

Glazer, A. N. (1977). Structure and molecular organization of the photosynthetic accessory pigments of cyanobacteria and red algae. Molecular and Cellular Biochemistry, 18(2–3), 125–140. doi: 10.1007/BF00280278

Golubic, S., & Seong-Joo, L. (1999). Early cyanobacterial fossil record: Preservation, palaeoenvironments and identification. European Journal of Phycology, 34(4), 339–348. doi: 10.1080/09670269910001736402

Grewe, C. B., & Pulz, O. (2012). The biotechnology of cyanobacteria. Ecology of Cyanobacteria II: Their Diversity in Space and Time, 9789400738553, 707–739. doi: 10.1007/978-94-007-3855-3_26

Gupta, R. C. (2009). Handbook of Toxicology of Chemical Warfare Agents. Elsevier Inc. doi: 10.1016/B978-0-12-374484-5.X0001-6

Hamilton, T. L., Bryant, D. A., & Macalady, J. L. (2016). The role of biology in planetary evolution: Cyanobacterial primary production in low-oxygen Proterozoic oceans. Environmental Microbiology, 18(2), 325–340. doi: 10.1111/1462-2920.13118

Haselkorn, R. (2009). Cyanobacteria. Current Biology, 19(7), R277–R278. doi: 10.1016/j.cub.2009.01.016

Hazra, P., & Saha Kesh, G. (2017). Isolation and purification of phycocyanin from cyanobacteria of a mangrove forest. Applied Biological Chemistry, 60(6), 631–636. doi: 10.1007/s13765-017-0320-x

Hinojosa, M. G., Gutiérrez-Praena, D., Prieto, A. I., Guzmán-Guillén, R., Jos, A., & Cameán, A. M. (2019). Neurotoxicity induced by microcystins and cylindrospermopsin: a review. Science of the Total Environment, 668(547–565). doi: 10.1016/j.scitotenv.2019.02.426

Hirschberg, J., & Chamovitz, D. (1994). Carotenoids in Cyanobacteria. In D. A. Bryant (Ed.), The Molecular Biology of Cyanobacteria (pp. 559–579). Springer, Netherlands. doi: 10.1007/978-94-011-0227-8_18

Hoffman, L. (1999). Marine cyanobacteria in tropical regions: Diversity and ecology. European Journal of Phycology, 34(4), 371–379. doi: 10.1080/09670269910001736432

Hollerbach, M. M., & Stina, E. A. (1969). Soil algae. Science, Leningrad (in Russian).

Inoue, N., Taira, Y., Emi, T., Yamane, Y., Kashino, Y., Koike, H., & Satoh, K. (2001). Acclimation to the Growth Temperature and the High-TemperatureEffects on Photosystem II and Plasma Membranes in a MesophilicCyanobacterium, Synechocystis sp.PCC6803. Plant and Cell Physiology, 42(10), 1140–1148. doi: 10.1093/pcp/pce147

Jančula, D., Straková, L., Sadílek, J., Maršálek, B., & Babica, P. (2014). Survey of cyanobacterial toxins in Czech water reservoirs-the first observation of neurotoxic saxitoxins. Environmental Science and Pollution Research, 21(13), 8006–8015. doi: 10.1007/s11356-014-2699-9

Jiang, Y. L., Wang, X. P., Sun, H., Han, S. J., Li, W. F., Cui, N., … Zhou, C. Z. (2017). Coordinating carbon and nitrogen metabolic signaling through the cyanobacterial global repressor NdhR. Proceedings of the National Academy of Sciences of the United States of America, 115(2), 403–408. doi: 10.1073/pnas.1716062115

Kaasalainen, U., Fewer, D. P., Jokela, J., Wahlsten, M., Sivonen, K., & Rikkinen, J. (2012). Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 109(15), 5886–5891. doi: 10.1073/pnas.1200279109

Kimambo, O. N., Gumbo, J. R., & Chikoore, H. (2019). The occurrence of cyanobacteria blooms in freshwater ecosystems and their link with hydro-meteorological and environmental variations in Tanzania. Heliyon, 5(3), e01312. doi: 10.1016/j.heliyon.2019.e01312

Kitahara, R., Oyama, K., Kawamura, T., Mitsuhashi, K., Kitazawa, S., Yasunaga, K., … Terauchi, K. (2019). Pressure accelerates the circadian clock of cyanobacteria. Scientific Reports, 9(1), 1–8. doi: 10.1038/s41598-019-48693-1

Kokociński, M., Dziga, D., Spoof, L., Stefaniak, K., Jurczak, T., Mankiewicz-Boczek, J., & Meriluoto, J. (2009). First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of western Poland. Chemosphere, 74(5), 669–675. doi: 10.1016/j.chemosphere.2008.10.027

Kokociński, M., Mankiewicz-Boczek, J., Jurczak, T., Spoof, L., Meriluoto, J., Rejmonczyk, E., … Soininen, J. (2013). Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environmental Science and Pollution Research, 20(8), 5243–5264. doi: 10.1007/s11356-012-1426-7

Komárek, J., & Anagnostidis, K. (1999). Cyanoprokaryota. I. Chroococcales. Spektrum, Akademischer Verlag, Heidelberg & Berlin.

Komárek, J., & Anagnostidis, K. (2005). Cyanoprocaryota. 2. Teil: Oscillatoriales / Susswasserflora von Mitteleuropa. Bd.19/1. G.Fischer, Jena-Stuttgart-Lübeck-Ulm.

Komárek, J., Kaštovský, J., Mareš, J., & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86.

Kraus, M. P. (1969). Resistance of blue-green algae to 60Co gamma radiation. Radiation Botany, 9(6), 481–489. doi: 10.1016/s0033-7560(69)80054-2

Kumar, J., Singh, D., Tyagi, M. B., & Kumar, A. (2018). Cyanobacteria: Applications in Biotechnology. Cyanobacteria: From Basic Science to Applications, 327–346. doi: 10.1016/B978-0-12-814667-5.00016-7

Lemasson, C., Marsac, N. T. D., & Cohen-Bazire, G. (1973). Role of Allophycocyanin as Light-Harvesting Pigment in Cyanobacteria. Proceedings of the National Academy of Sciences, 70(11), 3130–3133. doi: 10.1073/pnas.70.11.3130

Lindholm, T., Eriksson, J. E., Reinikainen, M., & Meriluoto, J. A. O. (1992). Ecological effects of hepatotoxic cyanobacteria. Environmental Toxicology & Water Quality, 7(1), 87–93. doi: 10.1002/tox.2530070108

Liu, X., Hou, W., Dong, H., Wang, S., Jiang, H., Wu, G., … Li, G. (2016). Distribution and Diversity of Cyanobacteria and Eukaryotic Algae in Qinghai–Tibetan Lakes. Geomicrobiology Journal, 33(10), 860–869. doi: 10.1080/01490451.2015.1120368

Lürling, M., Mello, M. M., de van Oosterhout, F., de Senerpont Domis, L., & Marinho, M. M. (2018). Response of Natural Cyanobacteria and Algae Assemblages to a Nutrient Pulse and Elevated Temperature. Frontiers in Microbiology, 9(AUG), 1851. doi: 10.3389/fmicb.2018.01851

Maltseva, I., Yarova, T., Arabadzhi-Tipenko, L., Pavlenko, O., Yakoviichuk, O., Zinenko, A., & Manuilova, M. (2019). Innovative technologies for ensuring ecological safety of maritime recreation. In M. Ekkert, O. Nestorenko, & M. Szynk (Eds.), Modern innovative and information technologies in the development of society. Series of monographs Faculty of Architecture, Civil Engineering and Applied Arts Katowice School of Technology Monograph 23 (pp. 29–38). Wydawnictwo Wyższej Szkoły Technicznej w Katowicach, Katowice.

Mateo, P., Leganés, F., Perona, E., Loza, V., & Fernández-Piñas, F. (2015). Cyanobacteria as bioindicators and bioreporters of environmental analysis in aquatic ecosystems. Biodiversity and Conservation, 24(4), 909–948. doi: 10.1007/s10531-015-0903-y

Miller, T. R., Beversdorf, L. J., Weirich, C. A., & Bartlett, S. L. (2017). Cyanobacterial toxins of the Laurentian great lakes, their toxicological effects, and numerical limits in drinking water. Marine Drugs, 15(6). doi: 10.3390/md15060160

Mohr, K. I., Brinkmann, N., & Friedl, T. (2011). Cyanobacteria. Encyclopedia of Earth Sciences Series, 9781402092114, 306–311. doi: 10.1007/978-1-4020-9212-1_221

Monteagudo, L., & Moreno, J. L. (2016). Benthic freshwater cyanobacteria as indicators of anthropogenic pressures. Ecological Indicators, 67, 693–702. doi: 10.1016/j.ecolind.2016.03.035

Moysiyenko, I. (2013). Floral diversity and taxonomic structure of the florat of he Pivnichne Prychornomoria (Northern Black Sea Coastal Plain). Chornomorski Botanical Journal, 9(1), 41–56 (in Ukrainian). doi: 10.14255/2308-9628/13.91/5

Nabout, J. C., da Silva Rocha, B., Carneiro, F. M., & Sant’Anna, C. L. (2013). How many species of Cyanobacteria are there? Using a discovery curve to predict the species number. Biodiversity and Conservation, 22(12), 2907–2918. doi: 10.1007/s10531-013-0561-x

Nemergut, D. R., Schmidt, S. S. K., Fukami, T., O’Neill, S. P., Bilinski, T. M., Stanish, L. F., … Gallagher, E. D. (2014). Soil Type Is the Primary Determinant of the Composition of the Total and Active Bacterial Communities in Arable Soils. Soil Biology and Biochemistry, 8(3), 1–8. doi: 10.1128/AEM.69.3.1800

Pankratova, E. M. (2006). Functioning of cyanobacteria in soil ecosystems. Eurasian Soil Science, 39(S1), S118–S127. doi: 10.1134/s1064229306130199

Pearson, L., Mihali, T., Moffitt, M., Kellmann, R., & Neilan, B. (2010). On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Marine Drugs, 8(5), 1650–1680. doi: 10.3390/md8051650

Posch, T., Köster, O., Salcher, M. M., & Pernthaler, J. (2012). Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Climate Change, 2(11), 809–813. doi: 10.1038/nclimate1581

Qin, L., Yu, Q., Ai, W., Tang, Y., Ren, J., & Guo, S. (2014). Response of cyanobacteria to low atmospheric pressure. Life Sciences in Space Research, 3, 55–62. doi: 10.1016/j.lssr.2014.09.001

Rampelotto, P. H. (2013). Extremophiles and extreme environments. Life, 3(3), 482–485. doi: 10.3390/life3030482

Rastogi, R. P., Madamwar, D., & Incharoensakdi, A. (2015). Bloom dynamics of cyanobacteria and their toxins: Environmental health impacts and mitigation strategies. Frontiers in Microbiology, 6(NOV). doi: 10.3389/fmicb.2015.01254

Rejmánková, E., Komárek, J., & Komárková, J. (2004). Cyanobacteria ‒ A neglected component of biodiversity: Patterns of species diversity in inland marshes of northern Belize (Central America). Diversity and Distributions, 10(3), 189–199. doi: 10.1111/j.1366-9516.2004.00077.x

Rodríguez-Ezpeleta, N., Brinkmann, H., Burey, S. C., Roure, B., Burger, G., Löffelhardt, W., … & Lang, B. F. (2005). Monophyly of primary photosynthetic eukaryotes: Green plants, red algae, and glaucophytes. Current Biology, 15(14), 1325–1330. doi: 10.1016/j.cub.2005.06.040

Rodriguez, H., Rivas, J., Guerrero, M. G., & Losada, M. (1989). Nitrogen-Fixing Cyanobacterium with a High Phycoerythrin Content. Applied and Environmental Microbiology, 55(3), 758.

Román, R. B., Alvárez-Pez, J. M., Fernández, F. G. A., & Grima, E. M. (2002). Recovery of pure b-phycoerythrin from the microalga porphyridium cruentum. Journal of Biotechnology, 93(1), 73–85. doi: 10.1016/S0168-1656(01)00385-6

Rücker, J., Stüken, A., Nixdorf, B., Fastner, J., Chorus, I., & Wiedner, C. (2007). Concentrations of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon-dominated temperate lakes. Toxicon, 50(6), 800–809. doi: 10.1016/j.toxicon.2007.06.019

Sánchez-Baracaldo, P., & Cardona, T. (2020). On the origin of oxygenic photosynthesis and Cyanobacteria. New Phytologist, 225(4), 1440–1446. doi: 10.1111/nph.16249

Satoh, S., Ikeuchi, M., Mimuro, M., & Tanaka, A. (2001). Chlorophyll b Expressed in Cyanobacteria Functions as a Light-harvesting Antenna in Photosystem I through Flexibility of the Proteins. Journal of Biological Chemistry, 276(6), 4293–4297. doi: 10.1074/jbc.M008238200

Schirrmeister, B. E., Antonelli, A., & Bagheri, H. C. (2011). The origin of multicellularity in cyanobacteria. BMC Evolutionary Biology, 11(1), 45. doi: 10.1186/1471-2148-11-45

Sergeev, V. N., Gerasimenko, L. M., & Zavarzin, G. A. (2002). The Proterozoic history and present state of cyanobacteria. Microbiology, 71(6), 623–637. doi: 10.1023/A:1021415503436

Sharma, N. K., Rai, A. K., & Stal, L. J. (2013). Cyanobacteria: An economic perspective. In Cyanobacteria: An Economic Perspective. Wiley Blackwell. doi: 10.1002/9781118402238

Sheath, R. G., & Cole, K. M. (1992). Biogeography of stream Macroalgae in North America. Journal of Phycology, 28(4), 448–460. doi: 10.1111/j.0022-3646.1992.00448.x

Shestakov, S. V., & Karbysheva, E. A. (2017). The origin and evolution of cyanobacteria. Biology Bulletin Reviews, 7(4), 259–272. doi: 10.1134/s2079086417040090

Singh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. (2016). Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in Microbiology, 7(APR). doi: 10.3389/fmicb.2016.00529

Sonani, R. R., Gupta, G. D., Madamwar, D., & Kumar, V. (2015). Crystal structure of allophycocyanin from marine cyanobacterium Phormidium sp. A09DM. PLoS ONE, 10(4). doi: 10.1371/journal.pone.0124580

Stadnichuk, I. N., Romanova, N. I., & Selyakh, I. O. (1985). A phycourobilin-containing phycoerythrin from the cyanobacterium Oscillatoria sp. Archives of Microbiology, 143(1), 20–25. doi: 10.1007/BF00414762

Stubbe, J., Tian, J., He, A., Sinskey, A. J., Lawrence, A. G., & Liu, P. (2005). Nontemplate-dependent polymerization processes: Polyhydroxyalkanoate Synthases as a Paradigm. Annual Review of Biochemistry, 74(1), 433–480. doi: 10.1146/annurev.biochem.74.082803.133013

Testai, E., Scardala, S., Vichi, S., Buratti, F. M., & Funari, E. (2016). Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Critical Reviews in Toxicology, 46(5), 385–419. doi: 10.3109/10408444.2015.1137865

Tolmachev, A. I. (1974). Introduction to Plant Geography. Science, Leningrad (in Russian).

Turner, A. D., Dhanji-Rapkova, M., O’Neill, A., Coates, L., Lewis, A., & Lewis, K. (2018). Analysis of Microcystins in Cyanobacterial Blooms from Freshwater Bodies in England. Toxins, 10(1). doi: 10.3390/toxins10010039

Uyeda, J. C., Harmon, L. J., & Blank, C. E. (2016). A comprehensive study of cyanobacterial morphological and ecological evolutionary dynamics through deep geologic time. PLoS ONE, 11(9). doi: 10.1371/journal.pone.0162539

Varshney, P., Mikulic, P., Vonshak, A., Beardall, J., & Wangikar, P. P. (2015). Extremophilic micro-algae and their potential contribution in biotechnology. Bioresource Technology, 184, 363–372). doi: 10.1016/j.biortech.2014.11.040

Vinogradova, O. (2012). Cyanoprokaryota in hyperhaline ecosystems of Ukraine. Alterpres, Kyiv (in Ukrainian).

Vinogradova, O. M. (2006). Cyanoprocaryota in hypergaline habitats and their adaptation strategies. Ukrainian Phytocenological Collection, 24, 33–44 (in Ukrainian).

Vinogradova, O. N. (2007). The diversity of blue-green algae in Ukraine: results and prospects of research. In C. P. Vasser (Ed.), Botany and Mycology: Modern Horizons (pp. 27–40). Naukova Dumka, Kyiv (in Ukrainian).

Vinogradova, O. N. (2014). Annotated list of Cyanoprokaryota hypergaline ecotopes of natural and protected areas in the south of Ukraine. Scientific Records of Cape Martyan Nature Reserve, 5, 61–72.

Vinogradova, O. N., & Kovalenko, O. V. (2012). The subfamily Leptolyngbyoideae Anagn. et Komárek (Cyanoprokaryota) in the flora of Ukraine. Аlgologia, 22(3), 316–330.

Vorovka, V. P. (2011). Landscape diversity of the Priazovk National Nature Park. Bulletin of the Donetsk Institute of Social Education, VII(7), 24–27 (in Ukrainian).

Vynogradova, O. M. (2016). Cyanoprokaryota of the coastal solonets of the Kuialnik Estuary. Chornomorski Botanical Journal, 12(1), 85–94 (in Ukrainian). doi: 10.14255/2308-9628/16.121/9

Walter, A., de Carvalho, J. C., Soccol, V. T., de Faria, A. B. B., Ghiggi, V., & Soccol, C. R. (2011). Study of phycocyanin production from spirulina platensis under different light spectra. Brazilian Archives of Biology and Technology, 54(4), 675–682. doi: 10.1590/S1516-89132011000400005

Walter, J. M., Lopes, F. A. C., Lopes-Ferreira, M., Vidal, L. M., Leomil, L., Melo, F., … Thompson, F. L. (2018). Occurrence of harmful cyanobacteria in drinking water from a severely drought-impacted semi-arid region. Frontiers in Microbiology, 9(FEB). doi: 10.3389/fmicb.2018.00176

Wright, D., Prickett, T., Helm, R. F., & Potts, M. (2001). Form species Nostoc commune (Cyanobacteria). International Journal of Systematic and Evolutionary Microbiology, 51(5), 1839–1852. doi: 10.1099/00207713-51-5-1839

Xiao, M., Li, M., & Reynolds, C. S. (2018). Colony formation in the cyanobacterium Microcystis. Biological Reviews, 93(3), 1399–1420. doi: 10.1111/brv.12401

Yatagai, F., & Ishioka, N. (2014). Are biological effects of space radiation really altered under the microgravity environment? Life Sciences in Space Research, 3, 76–89. doi: 10.1016/j.lssr.2014.09.005

York, A. (1999). Long-term effects of frequent low-intensity burning on the abundance of litter-dwelling invertebrates in coastal blackbutt forests of southeastern Australia. Journal of Insect Conservation, 3(3), 191–199. doi: 10.1023/A:1009643627781

Yurtsev, B. A. (1968). The flora of Suntar Hayat. Science, Leningrad (in Russian).

Zanchett, G., & Oliveira-Filho, E. C. (2013). Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins, 5(10), 1896–1917. doi: 10.3390/toxins5101896

Zhang, C. C., Zhou, C. Z., Burnap, R. L., & Peng, L. (2018). Carbon/Nitrogen Metabolic Balance: Lessons from Cyanobacteria. Trends in Plant Science, 23(12), 1116–1130. doi: 10.1016/j.tplants.2018.09.008

Zhang, D., Yang, Q., Xie, P., Deng, X., Chen, J., & Dai, M. (2012). The role of cysteine conjugation in the detoxification of microcystin-LR in liver of bighead carp (Aristichthys nobilis): A field and laboratory study. Ecotoxicology, 21(1), 244–252. doi: 10.1007/s10646-011-0783-1

Zhang, M., Qin, B., Yu, Y., Yang, Z., Shi, X., & Kong, F. (2016). Effects of temperature fluctuation on the development of cyanobacterial dominance in spring: implication of future climate change. Hydrobiologia, 763(1), 135–146. doi: 10.1007/s10750-015-2368-0

Zurawell, R. W., Chen, H., Burke, J. M., & Prepas, E. E. (2005). Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health ‒ Part B: Critical Reviews, 8(1), 1–37. doi: 10.1080/10937400590889412

Published
2020-03-12
How to Cite
Arabadzhy-Tipenko, L. (2020). Ecological and floristic characteristics of Cyanophyceae of Pryazovskyi National Nature Park. Agrology, 3(2), 66-79. https://doi.org/10.32819/020009
Section
Оriginal researches