Agroecological determinants of rapeseed yield variation

Keywords: productivity; ecological factors; dynamics; model; Brassica napus L.


Global food and energy security largely depends on the rate of main crops yield increase, so the research of limiting factors of yields is a pressing issue today. The aim of this work was to determine the contribution of agro-ecological factors, namely, bioclimatic variables, soil indicators and factors of landscape diversity to the variation of rapeseed yield parameters on the territory of Polissya and Forest-steppe zones of Ukraine during 1991–2017. The average rapeseed yield data by the administrative district for 10 regions was used as the material. The dynamics of rapeseed yield from the mid-1990s to the present described by a log-logistic model. The parameters of the yield model are the following indicators: lower limit of yield; upper limit of yield; slope that showing the rate of change in yield over time and ED50 – the time it takes to achieve half of the maximum yield level. There are statistically significant regression dependencies between rapeseed yield parameters and agroecological factors (p <0.05). Rapeseed yield parameters of 43‒68% are due to the action of agri-environmental factors, which determines this crop as sensitive to environmental changes. Agroecological factors by 43‒68% determine the variability of rapeseed yield, which determines this crop as sensitive to environmental conditions. The most sensitive to agroecological factors is the upper yield limit. There is a correlation between the Shannon index and the slope of the rapeseed yield regression model, as well as between the distance to the objects of Natural Reserve Fund (NRF) and the upper limit of yield. ED50 and the landscape diversity index are quadratically correlated, indicating the complex nature of the relationship between this yield parameter and landscape diversity. Rapeseed productivity is mostly influenced by the continentality of climate among other climate variables. High sensitivity of rapeseed yield parameters to soil indices was found, and mostly to the soil structure (sand content in soil), which largely determines the rapeseed yield spatial variation. The aspects of rapeseed yield variation that we have identified are quite important both in terms of forecasting models and in terms of farmland management.


Alignier, A., Bretagnolle, V., & Petit, S. (2012). Spatial patterns of weeds along a gradient of landscape complexity. Basic and Applied Ecology, 13(4), 328–337. doi: 10.1016/j.baae.2012.05.005

Amy, S. R., Heard, M. S., Hartley, S. E., George, C. T., Pywell, R. F., & Staley, J. T. (2015). Hedgerow rejuvenation management affects invertebrate communities through changes to habitat structure. Basic and Applied Ecology, 16(5), 443–451. doi: 10.1016/j.baae.2015.04.002

Arino, O. R. P., Julio, J., Vasileios, K., Sophie, B., Pierre, D., & Eric, V. B. (2012). Global Land Cover Map for 2009 (GlobCover 2009). European Space Agency (ESA) & Université catholique de Louvain (UCL). PANGAEA.

Bae, S., Müller, J., Lee, D., Vierling, K., Vogeler, J., Vierling, L., … Thorn, S. (2018). Taxonomic, functional, and phylogenetic diversity of bird assemblages are oppositely associated to productivity and heterogeneity in temperate forests. Remote Sensing of Environment, 215. doi: 10.1016/j.rse.2018.05.031

Basanets, O. (2017). 5 advantages and 5 disadvantages of rapeseed cultivation. Features of technology. SuperAgronom. Retrieved from (in Ukrainian)

Billeter, R., Liira, J., Bailey, D., Bugter, R., Arens, P., Augenstein, I., … Edwards, P. J. (2008). Indicators for biodiversity in agricultural landscapes: A pan-European study. Journal of Applied Ecology, 45, 141–150. doi: 10.1111/j.1365-2664.2007.01393.x

Brown, J., Beeby, R., & Penfield, S. (2019). Yield instability of winter oilseed rape modulated by early winter temperature. Scientific Reports, 9, 6953. doi: 10.1038/s41598-019-43461-7

Chaplin-Kramer, R., O’Rourke, M. E, Blitzer, E. J., & Kremen, C. (2011). A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecology Letters, 14(9), 922–932. doi: 10.1111/j.1461-0248.2011.01642.x

CONABIO. (2017). Ecosystems and agro-biodiversity across small and large-scale maize production systems, feeder study to the “TEEB for Agriculture and Food”. Retrieved from

Corwin, D. L., Kaffka, S. R., Hopmans, J. W., Mori, Y., Lesch, S. M., & Oster, J. D. (2003). Assessment and field-scale mapping of soil quality properties of a saline-sodic soil. Geoderma, 114(3–4), 231–259. doi: 10.1016/s0016-7061(03)00043-0

Donatelli, M., Srivastava, A., Duveiller, G., Niemeyer, S. & Fumagalli, D. (2015). Climate change impact and potential adaptation strategies under alternate realizations of climate scenarios for three major crops in Europe. Environmental Research Letters, 10(7), 075005. doi: 10.1088/1748-9326/10/7/075005

Fick, S. E., & Hijmans, R. J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. doi: 10.1002/joc.5086

Fuller, R. J., Gregory, R. D., Gibbons, D. W., Marchant, J. H., Wilson, J. D., Baillie, S. R., & Carter, N. (1995). Population declines and range contractions among lowland farmland birds in Britain. Conservation Biology, 9(6), 1425–1441. doi: 10.1046/j.1523-1739.1995.09061425.x

Galpern, P., Vickruck, J., Devries, J., & Gavin, M. (2019). Landscape complexity is associated with crop yields across a large temperate grassland region. Agriculture Ecosystems & Environment, 290, 106724. doi: 10.1016/j.agee.2019.106724

Grassini, P., Eskridge, K. M. & Cassman, K. G. (2013). Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications. 4(1), 2918. doi: 10.1038/ncomms3918

Haidash, V. (2002). Rape: its current state and prospects in Ukraine. Offer, 8‒9, 50‒51 (in Ukrainian).

Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., … Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12(2), e0169748. doi: 10.1371/journal.pone.0169748

Hipólito, J., Boscolo, D., & Viana, B. F. (2018). Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. Agriculture, Ecosystems & Environment, 256, 218–225. doi: 10.1016/j.agee.2017.09.038

Hooper, D. U, Chapin, F. S., & Ewel, J. J (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3–35. doi: 10.1890/04-0922

Iizumi, T., & Ramankutty, N. (2016). Changes in yield variability of major crops for 1981-2010 explained by climate change. Environmental Research Letters, 11(3), 034003. doi: 10.1088/1748-9326/11/3/034003

Jaime, R., Alcántara, J., Manzaneda, A., & Rey, P. (2018). Climate change decreases suitable areas for rapeseed cultivation in Europe but provides new opportunities for white mustard as an alternative oilseed for biofuel production. PLOS ONE, 13, e0207124. doi: 10.1371/journal.pone.0207124

Kucharik, C. J., & Ramankutty, N. (2005). Trends and variability in US corn yields over the twentieth century. Earth Interact, 9(1), 1–29. doi: 10.1175/ei098.1

Kukal, M. S., & Irmak, S. (2018). Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production. Scientific Reports, 8, 3450. doi: 10.1038/s41598-018-21848-2

Leng, G., & Huang, M. (2017). Crop yield response to climate change varies with crop spatial distribution pattern. Scientific Reports, 7, 1463. doi: 10.1038/s41598-017-01599-2

Li, C., Wang, R. H., Ning, H. S., & Luo, Q. H. (2016). Changes in climate extremes and their impact on wheat yield in Tianshan Mountains region, northwest China. Environmental Earth Sciences, 75(17), 1228. doi: 10.1007/s12665-016-6030-6

Lindgren, J., Lindborg, R., & Cousins, S. A. O. (2018). Local conditions in small habitats and surrounding landscape are important for pollination services, biological pest control and seed predation. Agriculture, Ecosystems & Environment, 251, 107–113. doi: 10.1016/J.AGEE.2017.09.025

McBratney, A. B., Whelan, B., & Shatar, T. M. (1997). Variability and uncertainty in spatial, temporal and spatiotemporal crop-yield and related data. In J. V. Lake, G. R. Bock & J. A. Goode (Eds.), Precision agriculture: Spatial and emporal variability of environmental quality (Ciba Foundation Symposium 210) (pp. 141‒160). John Wiley & Sons, New York. doi: 10.1002/9780470515419.ch9

Melnychuk, A. O., Bovsunovskyi, A. M., Savchuk, O. I., & Grishenko, V. (2011). Methodical recommendations for the suspension of degradation processes in agrolandscapes of the Polissya zone of Zhytomyr region. Institute of agriculture of Polissya NAAS, Zhytomyr (in Ukrainian).

O’Reilly-Nugent, A., Palit, R., Lopez-Aldana, A., Medina-Romero, M., Wandrag, E. & Duncan, R. P. (2016). Landscape effects on the spread of invasive species. Current Landscape Ecology Reports, 1, 107–114. doi: 10.1007/s40823-016-0012-y

Osman, D., Ozgur, A., & Ozlem, I. (2014). A Methodology to Implement Box-Cox Transformation When No Covariate is Available. Communications in Statistics ‒ Simulation and Computation, 43, 1740‒1759. doi: 10.1080/03610918.2012.744042

Picasso, V. D., Brummer, E. C., Liebman, M., Dixon, P., & Wilsey, B. J. (2008). Crop species diversity affects productivity and weed suppression in perennial polycultures under two management strategies. Crop Science, 48(1), 331–342. doi: 10.2135/cropsci2007.04.0225

Poveda, K., Martinez, E., Kersch-Becker, M., Bonilla, M., & Tscharntke, T. (2012). Landscape simplification and altitude affect biodiversity, herbivory and Andean potato yield. Journal of Applied Ecology, 49, 513‒522. doi: 10.1111/j.1365-2664.2012.02120.x

Qian, B., Jing, Q., Bélanger, G., Shang, J., Huffman, T., Liu, J., & Hoogenboom, G. (2017). Simulated Canola Yield Responses to Climate Change and Adaptation in Canada. Agronomy journal, 110. doi: 10.2134/agronj2017.02.0076

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL

Sys, C., Van Ranst, E., & Debaveye, J. (1991). Land evaluation. Part 1. Principles in land evaluation and crop production calculations. General Administration for Development Cooperation. Brussels, Agricultural Publication, Belgium.

Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., & Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science, 292(5515), 281–284.

Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth's ecosystems. Science, 277(5325), 494–499. doi: 10.1126/science.277.5325.494

Woodcock, B. A., Bullock, J. M., McCracken, M., Chapman, R. E., Ball, S. L., Edwards, M. E., … Pywell, R. F. (2016). Spill-over of pest control and pollination services into arable crops. Agriculture, Ecosystems & Environment, 231, 15–23. doi: 10.1016/j.agee.2016.06.023

Xiao, D. P, Moiwo, J. P., Tao, F. L., Yang, Y. H., Shen, Y. J., Xu, Q. H, … Liu, F. S. (2015). Spatiotemporal variability of winter wheat phenology in response to weather and climate variability in China. Mitigation and Adaptation Strategies for Global Change, 20(7), 1191‒1202. doi: 10.1007/s11027-013-9531-6

Zymaroieva, A. A. (2019) Assessment of the climate changes impact on the productivity of maize within the Polissya and Forest-steppe ecoregions within Ukraine. Scientific horizons, 11(84), 113–120 (in Ukrainian).

Zymaroieva, A. A., & Fedonyuk, T. P. (2019). Assessing the spatiotemporal dynamics of maise yield in the central and northern regions of Ukraine. Agrology, 2(4), 199‒204. doi: 10.32819/019028

Zymaroieva, A., Zhukov, O., Romanchuck, L. & Pinkin, A. (2019). Spatiotemporal dynamics of cereals grains and grain legumes yield in Ukraine. Bulgarian Journal of Agricultural Science, 25(6), 1107–1113.

How to Cite
Zymaroieva, A., Fedonyuk, T., Pinkina, T., & Pinkin, A. (2019). Agroecological determinants of rapeseed yield variation. Agrology, 3(1), 12-18.
Оriginal researches