The bird communities diversity and indicator groups of natural and anthropogenic landscapes of the South and South-east of Ukraine

  • O. I. Koshelev Bogdan Khmelnitsky Melitopol State Pedagogical University, Melitopol, Ukraine
  • V. O. Koshelev Bogdan Khmelnitsky Melitopol State Pedagogical University, Melitopol, Ukraine
  • M. P. Fedushko Bogdan Khmelnitsky Melitopol State Pedagogical University, Melitopol, Ukraine
  • O. V. Zhukov Bogdan Khmelnitsky Melitopol State Pedagogical University, Melitopol, Ukraine https://orcid.org/0000-0003-3661-3012
Keywords: ndicating value; landscape diversity; diversity fractioning; regression analysis; ecotone

Abstract

In the paper the factors affecting on the α- and β-diversity of bird communities in the south and south-east of Ukraine were identified. Also indicator species for most typical habitats of the territory were identified. The relationship between indicators of bird communities diversity and area of habitats were found. The recording of the comminities of birds was held in the zonal, azonal, intrazonal, and anthropogenically transformed landscapes in the river of Danube, Dniester, Moloshnaya, Moloshniy lagoons, in artificial forests, agricultural landscapes, steppe, meadow, reed, saltmarsh habitats of the sea islands in the settlements of various type. The quantitative assessments of bird communities biodiversity were made using the logarithm of the number of species, Shannon-Wiener index, the Pielow index. The effect of the area and the type habitat on a diversity index variance was estimated using the General linear models (GLM) procedure. The estimation of the mean α-diversity of the bierd communities diversity was found to be equal of 11.0 species varying from 10.9 to 11.11. Evaluation of the γ-diversity gived a mean value of 174 species with varying scores from 170 to 177 species. Evaluation of β-diversity gived a mean value of 15.8 varying from 15.4 to 16.1. The richest in the number of birds is forests and reed belts. The smallest species richness was characterized for steppes, marshes and cliffs. Between Shannon index and Pielow index there was a positive correlation. The greatest evennes in the number of species of birds are characterized by step, shelterbelts and forests communities. The smal-lest evennes was characteristic for pits, islands and cliffs communities. The fractioning of β-diversity indicated that the type of habitat determines 37% of the variation of this indicator and the area of habitat variation determining β-diversity. The joint effect of habitat type and area determines 11% of the variation of β-diversity. The main source of variation β-diversity was the differentiation gradient “open habitats” (steppe or agriculture biotopes) – forest habitats (forests, artificial forest plantations). Indices of species diversity of birds communities was found to be depend on the area and habitat types. Also shown the dependence of species diversity of the area is specific for each type of habitat. In most cases, the number of species increased from natural habitat area. You can select habitats with high levels of species depending on the area. These included belts, woodlands, thickets of reeds. The group with the lack of statistically significant association between the number of species and habitat area, or even negative bond include anthropogenically transformed or dynamic natural habitats (alluvial sand spit islands and estuaries, agricultural, residential areas, cliffs, steppes, lakes). Species richness of these habitats was formed by the representatives of other habitat factors result in landscape diversity. With the increase in some areas monocoenosis (steppe, lake or island) the relative area of contact with neighboring habitats and ecotonic effect was reduced, resulting in species richness decreases with increasing their area. The indicators species grops were reveales due to realation between biotopes types and bird distribution.

References

Ammon, E. M., & Stacey, P. B. (1997). Avian nest success in relation to past grazing regimes in a montane riparian system. Condor, 99(1), 7–13. doi: 10.2307/1370219

Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, N. J., Cornell, H. V., Comita, L. S., Davies, K. F., Harrison, S. P., Kraft, N. J. B., Stegen, J. C., & Swenson, N. G. (2011). Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecology Letters, 14, 19‒28. doi: 10.1111/j.1461-0248.2010.01552.x

Andriushchenko, Y. A., Katysh, S., Popenko, V., Siokhin, V., & Chernichko, Y. (2010). Methods of the birds recording for assessment of the resources of hunting species of wetland bird within hunting farms in the Azov-Black Sea region of Ukraine. Lahuna press, Melitopol (in Ukrainian).

Andrushenko, A. Y., & Zhukov, A. V. (2016). Scale-dependent effects in structure of the wintering ecological niche of the mute swan during wintering in the gulf of Sivash. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(3), 234–247 (in Russian). doi: 10.15421/201691

Angeler, D. G. (2013). Revealing a conservation challenge through partitioned long-term beta diversity: increasing turnover and decreasing nestedness of boreal lake metacommunities. Diversity and Distributions, 19, 772‒781. doi: 10.1111/ddi.12029

Ayubova, E. M., & Koshelev, V. A. (2019). The effect of pyrogenic succession on breeding birds of shelter belts in the north-western part of the Azov Sea Region. Vestnik Zoologii, 53(2), 149–154. doi: 10.2478/vzoo-2019-0015

Baselga, A. (2007). Disentangling distance decay of similarity from richness gradients: response to Soininen et al. Ecography, 30, 838‒841. doi: 10.1111/j.2007.0906-7590.05191.x

Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134–143. doi: 10.1111/j.1466-8238.2009.00490.x

Baselga, A., Gomez-Rodriguez, C., & Lobo, J. M. (2012). Historical legacies in world Amphibian diversity revealed by the turnover and nestedness components of beta diversity. PLoS One 7. doi: 10.1371/journal.pone.0032341

Blake, J. G., & Loiselle, B. A. (2000). Diversity of birds along an elevational gradient in the Cordillera Central, Costa Rica. The Auk, 117(3), 663–686. doi: 10.1642/0004-8038(2000)117

Chernichko, I. I., Siokhin, V. D., Dyadicheva, E. A., Kirikova, T. A., & Koshelev, A. I. (2000). Milk estuary. Number and placement of nesting near-water birds of the Azov-Black Sea region. Branta, Melitopol (in Russian).

Coops, N. C., & Catling, P. C. (2000). Estimating forest complexity in relation to time since fire. Austral Ecology, 25, 344–351. doi: 10.1046/j.1442-9993.2000.01045.x

Cousin, J. A., & Phillips, R. D. (2008). Habitat complexity explains species-specific occupancy but not species richness in a Western Australian woodland. Australian Journal of Zoology, 56(2), 95–102. doi: 10.1071/ZO07065

Dapporto, L., Fattorini, S., Voda, R., Dinca, V., & Vila, R. (2014). Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity. Journal of Biogeography, 41, 1639‒1650. doi: 10.1111/jbi.12315

de Caceres, M., & Legendre, P. (2009). Associations between species and groups of sites: indices and statistical inference. Ecology, 90, 3566‒3574. doi: 10.1890/08-1823.1

Dobrovolski, R., Melo, A. S., Cassemiro, F. A. S., & Diniz, J. A. F. (2012). Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Ecology and Biogeography, 21, 191‒197. doi: 10.1111/j.1466-8238.2011.00671.x

Edenius, L., & Sjöberg, K. (1997). Distribution of birds in natural landscape mosaics of oldgrowth forests in northern Sweden: relations to habitat area and landscape context. Ecography, 20, 425–431. doi: 10.1111/j.1600-0587.1997.tb00410.x

Ford, H. A., Barrett, G. W., Saunders, D. A., & Recher, H. F. (2001). Why have birds in the woodlands of Southern Australia declined? Biological Conservation, 97, 71–88. doi: 10.1016/S0006-3207(00)00101-4

Hansson, L. (1994). Vertebrate distributions relative to clear-cut edges in a boreal forest landscape. Landscape Ecology, 9, 105–115. doi: 10.1007/BF00124377

Heaney, L. R. (2001). Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Change Biology, 10, 15–39. doi: 10.1046/j.1466-822x.2001.00227.x

Herrera, J. M., Salgueiro, P. A., Medinas, D., Costa, P., Encarnacao, C., & Mira, A. (2016). Generalities of vertebrate responses to landscape composition and configuration gradients in a highly heterogeneous Mediterranean region. Journal of Biogeography, 43, 1203–1214. doi: 10.1111/jbi.12720

Hildén, O. (1965). Habitat selection in birds: a review. Annales Zoologici Fennici, 2, 54–75.

Holt, B., Lessard, J. P., Borregaard, M. K., Fritz, S. A., Araujo, M. B., Dimitrov, D., Fabre, P. H., Graham, C. H., Graves, G. R., Jonsson, K. A., Nogues-Bravo, D., Wang, Z. H., Whittaker, R. J., Fjeldsa, J., & Rahbek, C. (2013). An update of wallace’s zoogeographic regions of the world. Science, 339, 74‒78. doi: 10.1126/science.1228282

Hulbert, A. H. (2004). Species-energy relationships and habitat complexity in bird communities. Ecology Letters, 7, 714–720. doi: 10.1111/j.1461-0248.2004.00630.x

Jamoneau, A., Passy, S. I., Soininen, J., Leboucher, T., & Tison-Rosebery, J. (2018). Beta diversity of diatom species and ecological guilds: response to environmental and spatial mechanisms along the stream watercourse. Freshwater Biology, 63, 62‒73. doi: 10.1111/fwb.12980

Jankowski, J. E., Ciecka, A. L., Meyer, N. Y., & Rabenold, K. N. (2009). Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. Journal of Animal Ecology, 78, 315–327. doi: 10.1111/j.1365-2656.2008.01487.x

Karp, D. S., Frishkoff, L. O., Echeverri, A., Zook, J., Juarez, P., & Chan, K. M. A. (2018). Agriculture erases climatedrivenb-diversity in Neotropical bird communities. Global Change Biology, 24, 338‒349. doi: 10.1111/gcb.13821

Koshelev, V. (2018). Nest Ornitocompleses and the Functional Role of Birds in Sandy and Clay Careers in the South of Zaporozhia Region. Biological Bulletin of Bogdan Khmelnitsky Melitopol State Pedagogical University, 2, 20–31 (in Ukrainian).

Koshelev, V. A. (2017). Ornithocomplexes reeds: the structure, dynamics, problems of protection. Biology and valeology, 19, 16–27 (in Russian). doi: 10.5281/zenodo.1107832

Kreft, H., & Jetz, W. (2010). A framework for delineating biogeographical regions based on species distributions. Journal of Biogeography, 37, 2029‒2053. doi: 10.1111/j.1365-2699.2010.02375.x

Kricher, J. C. (1972). Bird Species Diversity: The Effect of Species Richness and Equitability on the Diversity Index Ecology, 53(2), 278–282. doi: 10.2307/1934082

Legendre, P., Borcard, D., & Peres-Neto, P. R. (2005). Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecological Monographs, 75, 435–450. doi: 10.1890/05-0549

Lennon, J. J., Koleff, P., Greenwood, J. J. D., & Gaston, K. J. (2001). The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966–979. doi: 10.1046/j.0021-8790.2001.00563.x

Li, Т., Chu, H., Qi, Y., Li, C., Ping, X., Sun, Y., & Jiang, Z. (2019). Alpha and beta diversity of birds along elevational vegetation zones on the southern slope of Altai Mountains: Implication for conservation. Global Ecology and Conservation, 19, e00643, doi: 10.1016/j.gecco.2019.e00643

Liggins, L., Booth, D. J., Figueira, W. F., Treml, E. A., Tonk, L., Ridgway, T., Harris, D. A., & Riginos, C. (2015). Latitude-wide genetic patterns reveal historical effects and contrasting patterns of turnover and nestedness at the range peripheries of a tropical marinefish. Ecography, 38, 1212‒1224. doi: 10.1111/ecog.01398

Ludwig, J. A., Eager, R. W., Liedloff, A. C., McCosker, J. C., Hannah, D., Thurgate, N. Y., Woinarski, J. C. Z., & Catterall, C. P. (2000). Clearing and grazing impacts on vegetation patch structures and fauna counts in eucalypt woodland, central Queensland. Pacific Conservation Biology, 6, 254–272. doi: 10.1071/PC000254

Maamar, B., Nouar, B., Soudani, L., Maatoug, M., Azzaoui, M., Kharytonov, M., Wiche, O. & Zhukov, O. (2018). Biodiversity and dynamics of plant groups of Chebket El Melhassa region (Algeria). Biosystems Diversity, 26(1), 62–70. doi: 10.15421/011810

MacArthur, R. H., & MacArthur, J. W. (1961). On bird species diversity. Ecology, 42, 594–598. doi: 10.2307/1932254

MacArthur, R. H., MacArthur, J. W., & Preer J. (1962). On bird species diversity. II. Prediction of bird census from habitat measurements. The American Naturalist, 96, 167–174.

Magurran, A. E. (2004). Measuring biological diversity. Oxford, UK, Blackwell Publishing.

Marcon, E., & Herault, B. (2015). Entropart: An R Package to Measure and Partition Diversity. Journal of Statistical Software, 67(8), 1–26. doi: 10.18637/jss.v067.i08

McCain, C. M. (2004). The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. Journal of Biogeography, 31(1), 19–31. doi: 10.1046/j.0305-0270.2003.00992.x

Morante-Filho, J. C., Arroyo-Rodriguez, V., & Faria, D. (2016). Patterns and predictors of beta-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds. Journal of Animal Ecology, 85, 240–250. doi: 10.1111/1365-2656.12448

Negadi, M., Hassani, A., Ait Hammou, M., Dahmani, W., Miara, M. D., Kharytonov, M., & Zhukov, O. (2018). Diversity of Diatom epilithons and quality of water from the subbasin of Oued Mina (district of Tiaret, Algeria). Ukrainian Journal of Ecology, 8(1), 103–117. doi: 10.15421/2017_194

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2018). Community Ecology Package. R package version 2.5-2. Retrieved from https://CRAN.R-project.org/package=vegan

Penone, C., Weinstein, B. G., Graham, C. H., Brooks, T. M., Rondinini, C., Hedges, S. B., Davidson, A. D., Costa, G. C. (2016). Global mammal beta diversity shows parallel assemblage structure in similar but isolated environments. Proceedings of the Royal Society B. Biological sciences, 283(1837). doi: 10.1098/rspb.2016.1028

Pielou, E. C. (1975). Ecological Diversity. Wiley, New York.

Potapenko, O., Kunah, O. M., & Fedushko, M. P. (2019). The effect of technological oil spill in soil within electrical generation substations, analysed by ecological regime in the context of relief properties. Biosystems Diversity, 27(1), 43–50. doi: 10.15421/011907

Roth, R. R. (1976). Spatial Heterogeneity and Bird Species Diversity. Ecology, 57(4), 773–782. doi: 10.2307/1936190

Saniga, M. (1995). Breeding bird communities of the fir-beech to the dwarfed-pines vegetation tiers in the Veľká Fatra and Malá Fatra mountains. Biologia, Bratislava, 50, 185–193.

Si, X. F., Baselga, A., & Ding, P. (2015). Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS One, 10. doi: 10.1371/journal.pone.0127692

Socolar, J. B., Gilroy, J. J., Kunin, W. E., & Edwards, D. P. (2016). How should beta-diversity inform biodiversity conservation? Trends in Ecolology and Evolution, 31, 67‒80. doi: 10.1016/j.tree.2015.11.005

Sokolov, S. G. & Zhukov, A. V. (2017). Functional Diversity of a Parasite Assemblages of the Chinese Sleeper Perccottus glenii Dybowski, 1877 (Actinopterygii: Odontobutidae) and Habitat Structure of the Host. Biology Bulletin, 44(3), 331–336. doi: 10.1134/S1062359017020182

Sokolov, S. G., & Zhukov, A. V. (2014). Variation trends in the parasite assemblages of the Chinese sleeper Perccottus glenii (Actinopterygii: Odontobutidae) in its native habitat. Biology Bulletin, 41(5), 468‒477. doi: 10.1134/S1062359014050100

Sokolov, S. G., & Zhukov, A. V. (2016). The Diversity of Parasites in the Chinese Sleeper Perccottus glenii Dybowski, 1877 (Actinopterygii: Perciformes) under the Conditions of Large-Scale Range Expansion. Biology Bulletin, 43(4), 374–383. doi: 10.1134/s1062359016040129

Volchanetsky, I. B. (1940). The main features of the fauna development in agromelioration planted forests of the steppe zone of Ukraine. Transactions of Zoobiological Institute, 8–9, 26–33 (in Russian).

Watson, J. E. M., Whittaker, R. J., & Dawson, T. P. (2004). Habitat structure and proximity to forest edge affect the abundance and distribution of forest-dependent birds in tropical coastal forests of southern Madagascar. Biological Conservation, 120, 311–327. doi: 10.1016/j.biocon.2004.03.004

Whittaker, R. H. (1960). Vegetation of the siskiyou mountains, Oregon and California. Ecological Monographs, 30, 279–338. doi: 10.2307/1943563

Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxonomy, 21, 213–251. doi: 10.2307/1218190

Willett, T. R. (2001). Spiders and other arthropods as indicators in old-growth versus logged redwood stands. Restoration Ecology, 9, 410–420. doi: 10.1046/j.1526-100X.2001.94010.x

Williams, R. J. (1990). Cattle grazing within subalpine heathland and grassland communities in the Bogong High Plains: disturbance, regeneration and the shrub-grass balance. Proceedings of the Ecological Society of Australia, 16, 255–265.

Willson, M. F. (1974). Avian community organization and habitat structure. Ecology, 55, 1017–1029. doi: 10.2307/1940352

Zellweger, F., Roth, T., Bugmann, H., & Bollmann, K. (2017). Beta diversity of plants, birds and butterflies is closely associated with climate and habitat structure. Global Ecology and Biogeography, 26, 898‒906. doi: 10.1111/geb.12598

Zhukov, A. V., & Shatalin, D. B. (2016). Hygrotope and trophotope of the steppe pridniprovie biogeoceonosis as determinants of the earthworms (Lumbricidae) communities β–diversity. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(2), 129–157 (in Russian). doi: 10.15421/201651

Zhukov, O. V., & Potapenko, O. V. (2017). Environmental impact assessment of distribution substations: the case of phytoindication. Ukrainian Journal of Ecology, 7(1), 5–21.

Zhukov, O. V., Kunah, O. M., & Dubinina, Y. Y. (2017). Sensitivity and resistance of communities: evaluation on the example of the influence of edaphic, vegetation and spatial factors on soil macrofauna. Biosystems Diversity, 25(4), 328–341 (in Ukrainian). doi: 10.15421/011750

Zhukov, O. V., Kunah, O. M., Dubinina, Y. Y., & Ganzha, D. S. (2017). Diversity and phytoindication ability of plant community. Ukrainian Journal of Ecology, 7(4), 81–99.

Published
2019-10-03
How to Cite
Koshelev, O., Koshelev, V., Fedushko, M., & Zhukov, O. (2019). The bird communities diversity and indicator groups of natural and anthropogenic landscapes of the South and South-east of Ukraine. Agrology, 2(4), 229-240. https://doi.org/10.32819/019032
Section
Оriginal researches