Calculation of moisture in various soil layers under corn crops according to the agrohydrometeorological dat
Abstract
Agricultural crops during the growing season use moisture from various layers of soil. The root-bearing layer of corn varies from 10 cm in the period of sowing to 70‒80 cm in the period of ripeness. It raises the question of determining the soil moisture for every day of vegetation at any depth. It is proved that now the agrohydrometeorological method for determining the moisture reserves in the meter and half-meter soil layers yields good results. Therefore, in this work, the use of this method for calculating soil moisture throughout the soil profile with an interval of 10 cm is substantiated. The proposed model for the formation of moisture reserves yields good results both in natural moisture and in the case of irrigation. The use of this model for soil moisture formation according to seven meteorological stations in Dnipropetrovsk region is explored. As an example, the results of the meteorological station Gubinicha are presented. The results obtained in this way can be presented in the form of moisture content as a percentage of the mass of dry soil or as a fraction of the lowest moisture content in depth during the vegetation. The method allows the use of meteorological values, measured directly on the studied areas. This is especially true of rainfall and irrigation. The application of research results will help to more accurately determine the moisture reserves in the roots of the soil layer, to plan the optimal timing of sowing crops, to effectively carry out care activities, to target mineral fertilizers, and to maintain soil moisture in the required limits for irrigation.References
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). FAO Irrigation and drainage paper No. 56. Food and Agriculture Organization of the United Nations, Rome.
Das, K., & Paul, P. K. (2015). Present status of soil moisture estimation by microwave remote sensing. Cogent Geoscience, 1(1). doi: 10.1080/23312041.2015.1084669
Dean, T. J., Bell, J. P., & Baty, A. J. B. (1987). Soil moisture measurement by an improved capacitance technique, Part I. Sensor design and performance. Journal of Hydrology, 93(1‒2), 67‒78. doi: 10.1016/0022-1694(87)90194-6
Docenko, V. I. (1998). Vykorystannja rozrahunkovyh zapasiv g'runtovoi' vology dlja optymizacii' rezhymu zroshennja kukurudzy v umovah Dnipropetrovs'koi' oblasti [Use of calculated soil moisture reserves to optimize the corn irrigation regime in the Dnipropetrovsk region]. News of Dnipropetrovsk State Agrarian University, 1‒2, 78–82 (in Ukrainian).
Galik, O., I., & Docenko, V., I. (1997). Ocinka umov zvolozhennja g'runtiv ta optymizacija zroshuval'nyh norm osnovnyh sil's'kogospodars'kyh kul'tur Dnipropetrovs'koi' oblasti [Assessment of soil moisture conditions and optimization of irrigation norms of main crops in Dnipropetrovsk region]. Taurian Scientific Bulletin, 5, 70–75 (in Ukrainian).
Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evette, S. R., Howell, T. A., & Tolk, J. A. (2008). ET mapping for agricultural water management: present status and challenges. Irrigation Science, 26, 223–237.
Huisman, J. A., Sperl, C., Bouten, W., & Verstraten, J. M. (2001). Soil water content measurements at different scales: accuracy of time domain reflectometry and ground-penetrating radar. Journal of Hydrology, 245(1‒4), 48‒58. doi: 10.1016/S0022-1694(01)00336-5
Kashenko, N. M. (2010). Processy vlagoperenosa v poristyh sredah [Water transfer processes in porous media]. Bulletin of the Immanuel Kant Russian State University, 10, 56‒58 (in Russian).
Kovalenko, V. V., Docenko, V. I., Rudakov, L. M., & Bugajova, I. J. (2015). Optymizacija agrogidrometeorologichnogo metodu v zadachah rozrahunku rezhymu g'runtovoi' vology [Optimization of the agrohydrometeorological method in the problems of calculating the soil moisture regime]. Bulletin of the National University of Water Management and Nature Management, 2. 139–141 (in Ukrainian).
Kovalenko, V. V., Rudakov, L. M., Docenko, V. I., & Bugajova, I. J. (2014). Vid rozrahunku vologozapasiv do stvorennja geoinformacijnoi' systemy rezhymu g'runtovoi' vology [From the calculation of moisture storage to the creation of a geoinformation system of soil moisture regime]. News of Dnipropetrovsk State Agrarian and Economic University, 2. 139–141 (in Ukrainian).
Lytovchenko, A. F., Docenko, V. I., Rudakov, L. N., & Tkachuk, A. V. (2001). Vybor peryoda nabljudenyj dlja rascheta normy zapasov pochvennoj vlagy pod posevamy sel'skohozjajstvennyh kul'tur v Stepnoj zone Ukrayny [Selection of the observation period for calculating the norm of soil moisture reserves under crops of crops in the Steppe Zone of Ukraine]. News of Dnipropetrovsk State Agrarian University, 1, 78–84 (in Ukrai-
nian).
Lуtovchenko, A. F. (2011). Agrogidrometeorologicheskij metod rascheta vlazhnosti pochvy i vodosberegajushhih rezhimov uvlazhnenija oroshaemyh kul'tur v Stepi i Lesostepi Ukrainy: monografija [Agrohydrometeorological method for calculating soil moisture and water-saving moisture regimes of irrigated crops in Steppe and Forest-Steppe of Ukraine: monograph]. Publishing house Svіdler A. L., Dnepropetrovsk (in Russian).
Mialon, A., Wigneron, J.-P., de Rosnay, P., Escorihuela, M. J., & Kerr, Y. H. (2012). Evaluating the L-MEB model from long-term microwave measurements over a rough field, SMOSREX 2006. IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1458‒1467. doi: 10.1109/TGRS.2011.2178421
Parlance, M. B., Katul, G. G., Folegatti, M. V., & Nielsen, D. R. (1993). Evaporation and the field scale soil water diffusivity function. Water Resources Research, 29(4), 1279‒1286. doi: 10.1029/93WR00094
Parrens, M., Mahfouf, J.-F., Barbu, A., & Calvet, J.-C. (2014). Assimilation of surface soil moisture into a multilayer soil mo-del: design and evaluation at local scale. Hydrology and Earth System Sciences Discussions, 10(7), 9645‒9688. doi: 10.5194/hessd-10-9645-2013
Rode, A. A. (2008). Osnovy uchenija o pochvennoj vlage: izbrannye trudy [Fundamentals of soil moisture theory: selected works]. V. V. Dokuchaev Soil Science Institute, Rossel'hozakademija, Moscow (in Russian).
Shpak, I. S. (1987). Raschet vlagi iz razlichnyh sloev pochvogrunta na isparenie pri oroshenii [Moisture consumption from different layers of soil to evaporation during irrigation]. Soil Science, 8, 56–68 (in Russian).
Stacheder, M., Koeniger, F., & Schuhmann, R. (2009). New dielectric sensors and sensing techniques for soil and snow moisture measurements. Sensors, 9(4), 2951‒2967. doi: 10.3390/s90402951
Uniyal, B., Dietrich, J., Vasilakos, C., & Tzoraki, O. (2017). Evaluation of SWAT simulated soil moisture at catchment scale by field measurements and Landsat derived indices. Agricultural water Management, 193, 55‒70. doi: 10.1016/j.agwat.2017.08.002
Vetrenko, E. A. (2014). Obosnovanie vybora matematicheskoj modeli vlagoperenosa v nenasyshhennyh pochvogruntah [Substantiation of the selection of the mathematic model for moisture transfer in the unsaturated soil]. Agricultural Journal in the Far East Federal District, 4(32), 21‒24 (in Russian).

This work is licensed under a Creative Commons Attribution 4.0 International License.