Albedo of the soil cover as a factor of the temporal dynamics of readily available soil moisture in the technosols of the Nikopol manganese ore basin

Keywords: reclamation; water regime; technosols; evapotranspiration; Penman-Monteith equitation


The simulation of moisture content in Nikopol manganese ore basin technosols was performed using the Penman-Monteith approach and evaluate the role of the dependence of soils surface albedo from the humidity in the intensity of evapotranspiration. The sod lithogenic soils on loess-like loam and pedozem were chosen as the objects of the investigation. The research was conducted during 2012–2014 years at the investigation station of the remediation within Nikopol manganese ore basin (city Pokrov, Ukraine). The evapotranspiration from the soil surface was calculated by means of Penman-Monteith equation. Root zone moisture depletion is evaluated as the difference between soil water content at field capacity (pF = 2.3) and actual soil water content. The Ks value which is a water stress factor equals 1.0 as long as soil water content is higher than readily available water. If soil water content is lower than readily available water, Ks decreases linearly from one to zero according to total available soil water consumed. The soil water balance is performed in ISAREG with a daily time. The evaluation of readily available water content was carried out based on Penman-Monteith model taking into account meteorological data, technosols water-physical properties and the dependence of soil surface albedo on soil humidity. The color of the surface of the sod-lithogenic soil on the loess-like loam varies from yellow (2.5Y 4/2) in wet condition to yellow-red (10YR 6/5) in the dry condition. Albedo of this soil depended on the humidity varies in the range 0.17–0.31. The surface color of the pedozem varies from very dark gray (10YR 3/1) in wet condition to light-gray (2.5YR 6/2) in the dry condition. Albedo of this soil depended on the humidity varies in the range 0.10–0.31. There is a linear relationship between the moisture content in the soil and albedo of the soil surface. Albedo changes along with the humidity are most significant in the sod-lithogenic soils on loess-like loams. This is confirmed by the greatest regression coefficient. Albedo changes along with the moisture content are least significant in the pedozem. The distributionі of this index for different teсhnosols are characterized by a high level of similarity of shape due to the fact that the overall climate factors are crucial in shaping the dynamics of moisture. The distributions can be most good represented as a complex mixture of normal distributions. It was found that water supplies monitoring before the start of the growing season can provide valuable information necessary for the selection of crops for cultivation in the current year. The results indicate the urgency of measures to save the winter rainfall on the fields.


Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy.

Allen, R. G., Smith, M., Perrier, A., & Pereira, L. S. (1994a). An update for the definition of reference evapotranspiration. ICID Bulletin, 43(2), 1–34.

Allen, R. G., Smith, M., Perrier, A., & Pereira, L. S. (1994b). An update for the definition of reference evapotranspiration. ICID Bulletin, 43(2), 35–92.

Arshad, M. A., & Martin, S. (2002). Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems & Environment, 88(2), 153–160. doi: 10.1016/S0167-8809(01)00252-3

Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449. doi: 10.1126/science.1155121

Bradshaw, A. (1997). Restoration of mined lands – Using natural processes. Ecological Engineering, 8(4), 255–269. doi: 10.1016/S0925-8574(97)00022-0

Cao, Y. G., Wang, J. M., Bai, Z. K., Zhou, W., Zhao, Z. Q., Ding, X., & Li, Y. (2015). Differentiation and mechanisms on physical properties of reconstructed soils on open-cast mine dump of loess area. Environmental Earth Sciences. 74(8), 6367–6380. doi: 10.1007/s12665-015-4607-0

Chanasyk, D. S., Mapfumo, E. & Chaikowsky, C. L. A. (2006). Estimating actual evapotranspiration using water budget and soil water reduction methods. Canadian Journal of Soil Science, 86(4), 757–766. doi: 10.4141/S05-063

Chavez, J., Neale, C. M. U., Prueger, J. H., & Kustas, W. P. (2008). Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values. Irrigation Science, 27(1), 67–81. doi: 10.1007/s00271-008-0122-3

Consoli, S., D’Urso, G., & Toscano, A. (2006). Remote sensing to estimate ET-fluxes and the performance of an irrigation district in southern Italy. Agricultural Water Management, 81, 295–314. doi: 10.1016/j.agwat.2005.04.008

Detto, M., Montaldo, N., Albertson, J. D., Mancini, M., & Katul, G. (2006). Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resources Research, 42(8), 1–16. doi: 10.1029/2005WR004693

Dexter, A. R. (2004). Soil physical quality Part I Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120, 201–214. doi: 10.1016/j.geoderma.2003.09.004

Evett, S. R., Prueger, J. H., & Tolk, J. A. (2011). Water and energy balances in the soil-plantatmosphere continuum. In: P. M. Huang, Y. Li, & M. E. Sumner (Eds.), Handbook of soil sciences: properties and processes. 2nd ed. (pp. 6-1–6-44). CRC Press, Boca Raton, Florida, USA.

Frouz, J. (2018). Changes of Water Budget during Ecosystem Development in Post-Mining Sites at Various Spatiotemporal Scales: The Need for Controlled Systems. In: J.-F. Liu & W.-Z. Gu (Eds.), Hydrology of Artificial and Controlled Experiments (pp. 95–106). IntechOpen. doi: 10.5772/intechopen.74238

Frouz, J., & Kuráž, V. (2014). Soil fauna and soil physical properties. In: J. Frouz (Ed.), Soil Biota and Ecosystem Development in Post Mining Sites. CRC Press, Boca Raton.

Hess, T. M. (1996). Evapotranspiration estimates for water balance scheduling in the UK. Irrigation News, 25, 31–36.

Hlaváčiková, H., & Novák, V. (2013). Comparison of daily potential evapotranspiration calculated by two procedures based on Penman-Monteith type equation. Journal of Hydrology and Hydromechanics, 61(2), 173–176. doi: 10.2478/johh-2013-0022

Hunsaker, D. J., Pinter, P. J., & Kimball, B. A. (2005). Wheat basal crop coefficients determined by normalized difference ve-

getation index. Irrigation Science, 24(1), 1–14. doi: 10.1007/s00271-005-0001-0

Huot, H., Séré, G., Charbonnier, P., Simonnot, M. O., & Morel, J. L. (2015). Lysimeter monitoring as assessment of the potential for revegetation to manage former iron industry settling ponds. Science of the Total Environment, 526, 29–40. doi: 10.1016/j.scitotenv.2015.04.025

Jabloun, M. & Sahli, A. (2008). Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia. Agricultural Water Management, 95(6), 707–715. doi: 10.1016/j.agwat.2008.01.009

Jackson, R. J. (1967). The effect of slope, aspect and albedo on potential evapotranspiration from hillslopes and catchments. Journal of Hydrology (New Zealand), 6(2), 60–69. Retrieved from

Klimkina, I., Kharytonov, M., & Zhukov, O. (2018). Trend Analysis of Water-Soluble Salts Vertical Migration in Technogenic Edaphotops of Reclaimed Mine Dumps in Western Donbass (Ukraine). Journal of Environmental Research, Engineering and Management, 74(2), 82–93. doi: 10.5755/j01.erem.74.2.19940

Kofodziej, B., Bryk, M., Sfowiſska-Jurkiewicz, A., Otremba, K., & Gilewska, M. (2016). Soil physical properties of agriculturally reclaimed area after lignite mine: A case study from central Poland. Soil and Tillage Research, 163, 54–63. doi: 10.1016/j.still.2016.05.001

Komlyk, V. O., & Brygadyrenko, V. V. (2019). Morphological variability of Bembidion aspericolle (Coleoptera, Carabidae) populations in conditions of anthropogenic impact. Biosystems Diversity, 27(1), 21–25. doi: 10.15421/011903

Krümmelbein, J., Horn, R., Raab, T., Bens, O., & Hüttl, R. (2010). Soil physical parameters of a recently established agricultural recultivation site after brown coal mining in Eastern Germany. Soil and Tillage Research, 111, 19–25. doi: 10.1016/j.still.2010.08.006

Krümmelbein, J., & Raab, T. (2012). Development of soil physical parameters in agricultural reclamation after brown coal mining within the first four years. Soil and Tillage Research, 125, 109–155. doi: 10.1016/j.still.2012.06.013

Larney, F. J., & Angers, D. A. (2012). The role of organic amendments in soil reclamation: A review. Canadian Journal of Soil Science, 92(1), 19–38. doi: 10.4141/CJSS2010-064

Leguédois, S., Séré, G., Auclerc, A., Cortet, J., Huot, H., Ouvrard, S., Watteau, F., Schwartz, C., & Morel, J. L. (2016). Modelling pedogenesis of Technosols. Geoderma, 262, 199–212. doi: 10.1016/j.geoderma.2015.08.008

Maltsev, Y. I., Didovich, S. V., & Maltseva, I. A. (2017). Seasonal changes in the communities of microorganisms and algae in the litters of tree plantations in the steppe zone. Eurasian Soil Science, 50(8), 935–942. doi: 10.1134/S1064229317060059

Maslikova, K. P., Ladska, I. V., & Zhukov, O. V. (2016). Permeability of soils in artificially created models with different stratigraphy. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(3), 234–247. doi: 10.15421/201693

Monteith, J. L. (1965). Evaporation and the environment. In: G. E. Fogg (Ed.), The State and Movement of Water in Living Organisms (pp. 205–234). Cambridge University Press, London.

Penman, H. L. (1948). Natural evaporation from open water, bare soil, and grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193(1032), 120–145. Retrieved from

Pereira, L. S., Cai, L. G., & Hann, M. J. (2003). Farm water and soil management for improved water use in the North China Plain. Irrigation and Drainage, 52(4), 299–317. doi: 10.1002/ird.98

Pihlap, E., Vuko, M., Lucas, M., Steffens, M., Schloter, M., Vetterlein, D., Endenich, M., & Kögel-Knabner, I. (2019). Initial soil formation in an agriculturally reclaimed open-cast mining area ‒ the role of management and loess parent material. Soil and Tillage Research, 191, 224–237. doi: 10.1016/j.still.2019.03.023

Popova, Z., Eneva, S., & Pereira, L. S. (2006). Model validation, crop coefficients and yield response factors for maize irrigation scheduling based on long-term experiments. Biosystems Engineering, 95(1), 139–149. doi: 10.1016/j.biosystemseng.2006.05.013

Post, D. F., Fimbres, A., Matthias, A. D., Sano, E. E., Accioly, L., Batchily, A. K., & Ferreira, L. G. (2000). Predicting Soil Albedo from Soil Color and Spectral Reflectance Data. Soil Science Society of America Journal, 64, 1027–1034. doi: 10.2136/sssaj2000.6431027x

Potapenko, O., Kunah, O. M., & Fedushko, M. P. (2019). The effect of technological oil spill in soil within electrical generation substations, analysed by ecological regime in the context of relief properties. Biosystems Diversity, 27(1), 43–50. doi: 10.15421/011907

Rahgozar, M., Shah, N., & Ross, M. (2012). Estimation of Evapotranspiration and Water Budget Components Using Concurrent Soil Moisture and Water Table Monitoring. ISRN Soil Science, ID 726806, 15. doi: 10.5402/2012/726806

Ray, S. S., & Dadhwal, V. K. (2001). Estimation of crop evapotranspiration of irrigation command area using remote sensing and GIS. Agricultural Water Management, 49(3), 239–249. doi: 10.1016/S0378-3774(00)00147-5

Reynolds, J., Kemp, P., & Tenhunen, J. (2000). Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan desert: A modeling analysis. Plant Ecology, 150(1–2), 145–159.

Sanborn, P., Bulmer, C., & Coopersmith, D. (2004). Use of wood waste in rehabilitation of landings constructed on fine-textured soil, central interior British Columbia, Canada. Western Journal of Applied Forestry, 19(3), 175–183. doi: 10.1093/wjaf/19.3.175

Scherbina, V. V., Maltseva, I. A., & Solonenko, A. N. (2014). Peculiarities of postpyrogene development of algae in steppe biocenoses at Askania Nova Biospheric National Park. Contemporary Problems of Ecology, 7(2), 187–191. doi: 10.1134/S1995425514020140

Seginer, I. (1969). The effect of albedo on the evapotranspiration rate. Agricultural Meteorology, 6(1), 5–31. doi: 10.1016/0002-1571(69)90031-4

Sharma, M. L. (1985). Estimating evapotranspiration. Advances in Irrigation, 3, 213–281. doi: 10.1016/B978-0-12-024303-7.50010-8

Shcherbyna, V. V., Maltseva, I. A., & Maltsev, Y. I. (2017). Post-pyrogenic changes in vegetation cover and biological soil crust in steppe ecosystems. Regulatory Mechanisms in Biosystems, 8(4), 633–638. doi: 10.15421/021797

Shrestha, R. K., & Lal, R. (2008). Land use impacts on physical properties of 28 years old reclaimed mine soils in Ohio. Plant Soil, 306, 249–260. doi: 10.1007/s11104-008-9578-4

Shrestha, R. K., & Lal, R. (2011). Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma, 161, 168–176. doi: 10.1016/j.geoderma.2010.12.015

Singh, P., Ram, S., & Ghosh, A. K. (2015). Changes in physical properties of mine soils brought about by planting trees. Eco-

logy, Environment and Conservation Paper, 21, AS187–AS193.

Slabbers, P. J. (1980). Practical prediction of actual evapotranspiration. Irrigation Science, 1(3), 185–196. doi: 10.1007/BF00270883

Tasumi, M. & Allen, R. G. (2007). Satellite-based ET mapping to assess variation in ET with timing of crop development. Agricultural Water Management, 88(1), 54–62. doi: 10.1016/j.agwat.2006.08.010

Teixeira, J. L. & Pereira, L. S. (1992). ISAREG, an irrigation scheduling model. ICID Bulletin, 41(2), 29–48.

Toy, T. J. (1979). Potential evapotranspiration and surfacemine rehabilitation in the Powder River Basin, Wyoming and Montana. Journal of Range Management, 32(4), 312–317. doi: 10.2307/3897839

Tromp-van Meerveld, H. J., & McDonnell, J. J. (2006). On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hill slope scale. Advances in Water Resources, 29, 293–310. doi: 10.1016/j.advwatres.2005.02.016

Williams, C. A., & Albertson, J. D. (2004). Soil moisture controls on canopy-scale water and carbon fluxes in an African savanna. Water Resources Research, 40(9), W09302, doi: 10.1029/2004WR003208

Zeng, N., & Yoon, J. (2009). Expansion of the world’s deserts due tovegetation-albedo feedback under global warming. Geophysical Research Letters, 36, L17401. doi: 10.1029/2009GL039699

Zhukov, O. V., Zadorozhna, G. O., Maslikova, K. P., Andrusevych, K. V., & Lyadskaya, I. V. (2017a). Tehnosols Ecology: monograph. Zhurfond, Dnipro.

Zhukov, A., & Zadorozhnaya, G. (2016). Spatial heterogeneity of mechanical impedance of a typical chernozem: the ecological approach. Ekológia (Bratislava), 35, 263–278. doi: 10.1515/eko-2016-0021

Zhukov, A. V., Kunah, O. N., Novikova, V. A., & Ganzha, D. S. (2016a). Phytoindication estimation of soil mesopedobionts communities catena and their ecomorphic organization. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(3), 91–117. doi: 10.15421/201676

Zhukov, A. V., Sirovatko, V. O., & Ponomarenko, N. O. (2017b). Spatial dynamic of the agriculture fields towards their shape and size. Ukrainian Journal of Ecology, 7(3), 14–31. doi: 10.15421/2017_45

Zhukov, O. V., Kovalenko, D. V., Kramarenko, S. S., & Kramarenko, A. S. (2019). Analysis of the spatial distribution of the ecological niche of the land snail Brephulopsis cylindrica (Stylommatophora, Enidae) in technosols. Biosystems Diversity, 27(1), 62–68. doi: 10.15421/011910

Zhukov, O. V., & Maslikova, K. P. (2018). The dependence of the technosols models functional properties from the primary stratigraphy designs. Journal of Geology, Geography and Geoecology, 27(2), 399–407. doi: 10.15421/111864

Zhukov, O. V (2015). Influence of usual and dual wheels on soil penetration resistance: the GIS-approach. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 3, 73–100. doi: 10.7905/bbmspu.v5i3.988

Zhukov, O. V., Kunah, O. M., Taran, V. O., & Lebedinska, M. M. (2016b). Spatial variability of soils electrical conductivity within arena of the river dnepr valley (territory of the natural reserve “Dniprovsko–Orilsky”). Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(2), 129–157 (in Ukranian). doi: 10.15421/201646

Zhukov, O. V., Kunah, O. N., & Novikova, V. A. (2016c). The functional organisation of the mesopedobionts community of sod pinewood soils on arena of the river Dnepr. Visnyk of Dnipropetrovsk University. Biology, ecology, 24(1), 26–39. doi: 10.15421/011604

How to Cite
Gritsan, Y., Kunah, O., Fedushko, M., Babchenko, A., Sirovatko, V., Zhukov, O., & Kotsun, V. (2019). Albedo of the soil cover as a factor of the temporal dynamics of readily available soil moisture in the technosols of the Nikopol manganese ore basin. Agrology, 2(3), 161-169.
Оriginal researches