Phytomass of the crown component of robinite forests in the northern steppe of Ukraine

Keywords: mathematical modeling; norms of phytomass; tax indicators of the forest stand; Robinia pseudoacacia L.


The main factors influencing the formation of phytomass of forest plantations are the genetics and origin of the tree species, the conditions of natural habitat, the way of planting, the forest vegetation, weather and climatic conditions of treestanding and the biometric characteristics. The purpose of the study was to develop the norms for assessing the components of the above-ground phytomass of the structural components of the crown of robinite treestands in the Northern Steppe of Ukraine. The classical forest-tactical method of material collecting and processing is used in the research. Correlation analysis was used for the statistical processing of data and the regression dependence of the phytosanitary components of the crown plantings of the unrealized plantings from the taxonomic and forestry indices of the treestand was established. A working data set has been formed, which characterizes the phytosanitary components of the krona for assessing the biotic productivity of artificial pine forests. Three-factor mathematical models for estimating phytomass of the crown - branches in the cortex, woody greens and leaves are developed and presented. The informative, statistically significant predictors during the development of mathematical models determined the average data of the diameter and height of the stands and relative completeness. Phytomass of wood greens and leaves will be larger in the planting, where the smaller is the average diameter in trees with the same average height and relative completeness. Indicators of the average height of the tree stand and its relative completeness in mathematical models have a positive value, which causes an increase in the phytomass of the components of the crown (branches, woody greens and leaves) with the increase of the indicated biometric and forestry parameters. On the basis of regression models, normative informational tables for the Northern steppe zone of Ukraine were constructed. The proposed alometric equations for calculating the phytomass of branches, woody greens and leaves can be used for practical forest management purposes during forest inventory works, determination of forest use volumes with an orientation towards comprehensive development of resources of robin forest stands


Bosela, M., Štefančík, I., Petráš, R. & Vacek, S. (2016). The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agriculture & Forestry Meteorology, 222, 21–31. doi: 10.1016/j.agrformet.2016.03.005

Brus, D. J., Hengeveld, G. M., Walvoort, D. J. , Goedhart, P.W., Heidema, A. H. & Nabuurs, G. J. (2012). Statistical mapping of tree species over Europe. Europian Journal Forest Resourses, 131, 145–157. doi: 10.1007/s10342-011-0513-5

Capozzi, F., Di Palma, A., Adamo, P., Spagnuolo, V., & Giordano, S. (2017). Monitoring chronic and acute PAH atmospheric pollution using transplants of the moss Hypnum cupressiforme and Robinia pseudacacia leaves. Atmospheric Environment, 150, 45–54. doi: 10.1016/j.atmosenv.2016.11.046

Dolos, K., Bauer, A., & Albrecht, S. (2015). Site suitability for tree species: Is there a positive relation between a tree species’ occurrence and its growth? European Journal of Forest Research, 134, 609–621.

Felipe-Lucia, M. R., Soliveres, S., Penone, C., Manning, P, Van der, P. F., Boch, S., Prati, D., Ammer, C., Schall. P., Gossner, M. M., Bauhus, J., Buscot, F., Blaser, S., Blüthgen, N., Ehbrecht, M., Frank, K., Goldmann, K., Hänsel, F., Jung, K., Kahl, T., Nauss, T., Oelmann, Y., Pena, R., Polle, A., Renner, S., Schloter, M,, Schöning, I,, Schrumpf, M,, Schulze, E. D., Solly, E., Sorkau, E., Stempfhuber, B,, Tschapka, M., Weisser, W. W., Wubet, T., Fischer, M. & Allan, E. (2018). Multiple forest attributes underpin the supply of multiple ecosystem services. Nat Commun, 9, 4839. doi: 10.1038/s41467-018-07082-4

Forrester, D. I., Tachauer, I. H., Annighoefer, P., Barbeito, I., Pretzsch, H., RuizPeinado, R., Stark, H., Vacchiano, G., Zlatanov, T., Chakraborty, T., Saha, S. & Sileshi, G. W. (2017). Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecological Management, 396, 160–175. doi: 10.1016/j.foreco.2017.04.011

Hlásny, T., Barcza, Z., Fabrika, M., Balázs, B., Churkina, G. & Pajtík, J. (2011). Climate change impacts on growth and carbon balance of forests in Central Europe. Climate Resourses, 47, 219–236. doi: 10.3354/cr01024

Jagodziński, A., Dyderski M., Gęsikiewicz K. & Horodecki P. (2019). Tree and stand level estimations of Abies alba Mill. aboveground biomass. Annals of Forest Science, 76, 55–69. doi: 10.1007/s13595-019-0842-y

Kou, M., Fayos, P., Hu, H., & Jiao, J. (2016). The effect of Robinia pseudoacacia afforestation on soil and vegetation properties in the Loess Plateau (China): A chronosequence approach. Forest Ecology and Management. 375(1), 146–158. doi: 10.1016/j.foreco.2016.05.025

Lakyda, P. І. & Blyshhik, І. V. (2010). Fitomasa vil'shnjakiv Zahidnogo Polissja Ukrai'ny [Phytomass alders of Western Polissya of Ukraine]. Korsun Shevchenkіvskij, FOP Majdachenko І. S. (in Ukrainian).

Lakyda, P. І., & Sytnyk, S. A. (2014). Osobly`vosti taksacijnoyi struktury` derevostaniv Robinia pseudoacacia L. Pry`dniprovs`kogo Pivnichnogo Stepu Ukrayiny` [Peculiarities of forest inventory structure of black locust stands Steppe in Dnieper Northern of Ukraine]. Forestry & Forest Melioration, 125, 25–31 (in Ukrainian).

Lakyda, P., Nilsson, S. & Shvidenko, A. (1996). Estimation of forest phytomass for selected countries of the former European USSR. BiomassBioenergy, 11, 371–382. doi: 10.1016/S0961-9534(96)00030-X

Ledermann, T. & Neumann, M. (2006). Biomass equations from data of old long-term experimental plots. Austrian Journal Forensic Science, 123: 47–64.

Lovynska, V. & Sytnyk, S. (2016). The structure of Scots pine and Black locust forests in the Northern Steppe of Ukraine Journal Forest Science, 62(7), 329–336. doi: 10.17221/120/2015-JFS

Lovynska, V. M., Sytnyk, S. A., Maslikova, K. P., Gritsan, Y. I. (2017). Analysis of the productivity of pine stands in plantations in the Northern Steppe of Ukraine. Biosystems Diversity, 25(1), 39–44. doi: 10.15421/011706

Masuyk, O. N. (2009). O osobennosti formirovanija kornevoj sistemy robinii lzheakacii v raznyh lesorastitel’nyh uslovijah, sozdannyh na rekul’tivirovannyh zemljah [Features of the formation of the root system Black locust in the different forestry condition created on reclamation lands]. Visnyk DNU, 10(1–2), 65–70 (in Russian).

Meier, E. S., Lischke, H., Schmatz, D. R. & Zimmermann, N. E. (2012). Climate, competition and connectivity affect future migration and ranges of European trees. Global Ecological Biogeography, 21, 164–178. doi: 10.1111/j.1466-8238.2011.00669.x

Mina, M., Bugmann, H., Cordonnier, T., Irauschek, F., Klopcic, M., & Pardos, M., (2017). Future ecosystem services from European mountain forests under climate change. Journal Applied Ecoogy, 54, 389–401. doi: 10.1111/1365-2664.12772

Ni, K., Yang, H., Ang, H., Hua, W., Wang, Y., & Pang, H. (2016). Selection and characterisation of lactic acid bacteria isolated from different origins for ensiling Robinia pseudoacacia and Morus alba L. leaves. Journal of Integrative Agriculture, 15, 2353–2362. doi: 10.1016/S2095-3119(15)61251-5

Nord-Larsen, T. & Nielsen, A. T. (2015). Biomass, stem basic density and expansion factor functions for five exotic conifers grown in Denmark. Scandinavian Journal Forest Recourses, 30, 135–153. doi: 10.1080/02827581.2014.986519

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S. & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988–993. doi: 10.1126/science.1201609

Pearson, R. G. & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology Biogeography, 12, 361–371. doi: 10.1046/j.1466-822X.2003.00042.x

Rieger, I., Kowarik, I., Cherubini, P. & Cierjacks, A. (2017). A novel dendrochronological approach reveals drivers of carbon sequestration in tree species of riparian forests across spatiotemporal scales. Science Total Environment, 574, 1261–1275. doi: 10.1016/j.scitotenv.2016.07.174

Schepaschenko, D., Moltchanova, E., Shvidenko, A., Blyshchyk, V., Dmitriev, E., Martynenko, O., See, L., & Kraxner, F. (2018). Improved estimates of biomass expansion factors for Russian forests. Forests, 9, 312. doi: 10.3390/f9060312

Seidl, R., Aggestam, F., Rammer, W., Blennow, K, & Wolfslehner, B. (2016). The sensitivity of current and future forest managers to climate-induced changes in ecological processes. Ambio, 45, 430–441. doi: 10.1007/s13280-015-0737-6

Sohngen, B, & Tian, X. (2016). Global climate change impacts on forests and markets. Forest Policy Economy, 72, 18–26. doi: 10.1016/j.forpol.2016.06.011

Sytnyk, S. A., & Lovynska, V. M. (2016). Energetychnyj potencial nasadzhen’ golovnyh lisoutvorjuval’nyh porid Pivnichnogo Stepu Ukrai’ny [Energy potential of the main forestforming stands within Ukrainian Northern Steppe]. Forestry & Forest Melioration, 129, 146–153 (in Ukrainian).

Sytnyk, S., Lovynska, V., Lakyda, P. & Maslikova, K. (2018). Basic density and crown parameters of forest forming species within Steppe zone in Ukraine. Folia Oecologica, 45, 82–91. doi: 10.2478/foecol-2018-0009

Teobaldelli, M., Somogyi, Z., Migliavacca, M. & Usoltsev, V. A. (2009). Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecology Management, 257, 1004–1013. doi: 10.1016/j.foreco.2008.11.002

Uri, V., Varik, M., Aosaar, J., Kanal, A., Kukumägi, M., & Lõhmus, K. (2012). Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. Forest Ecology Managment 267: 117–126. doi: 10.1016/j.foreco.2011.11.033

Yan, W., Zhong, Y., & Shangguan, Z. (2017). Rapid response of the carbon balance strategy in Robinia pseudoacacia and Amorpha fruticosa to recurrent drought. Environmental and Experimental Botany, 138, 46–56. doi: 10.1016/j.envexpbot.2017.03.009

Yang, S., Li, G., Zhao, Z., Feng, M., Fu, J., Huang, Z., Song, M., & Lin, S. (2017). The Taishan Robinia pseudoacacia polysaccharides enhance immune effects of rabbit hemorrhagic disease virus inactivated vaccines. Microbial Pathogenesis, 112, 70–75. doi: 10.1016/j.micpath.2017.09.037

Yantsev, A. V. (2012). Vybor statisticheskih kriteriev [Selection of statistical criteria]. Symferopol, TNU (in Russian).

Zhang, Y., Chen, H. Y. H. & Reich, P. B. (2012). Forest productivity increases with evenness, species richness and trait variation: a global metaanalysis. Journal Ecology, 100, 742–749. doi: 10.1111/j.1365-2745.2011.01944.x

How to Cite
Sytnyk, S. (2019). Phytomass of the crown component of robinite forests in the northern steppe of Ukraine. Agrology, 2(3), 139-145.
Оriginal researches