Content of anthocyans in sweet corn with different grain coloring

Keywords: Zea mays L.; species of anthocyans; glucosidic form of anthocyans; genotype; food corn


In connection with the unbalanced nutrition of people, the constant psychological and physical stress of humankind, the spread of diseases of different etymologies, the growing of agricultural crops with high anthocyan content and the obtaining of antioxidants from food products is very actual and requires more in-depth study. Sweet corn has proven itself as a valuable food culture, therefore it is expedient to search and create sweet corn genotypes with high content of anthocyans in grain. The material to be studied was the inbred line of sweet corn (Zea mays L.) CE401 with white coloring grain and the population of F4(CE401×Chornosteblova) with purple coloring grain. Determination of the content of anthocyans was carried out by means of modified method of differential spectrophotometry. The content of four non- glucosidic forms (delphinidin, pelargonidin, peonidin and cyanidin) and four glucoside (delphinidin-3-glucoside, pelargonidin-3-glucoside, peonidin-3-glucoside and cyanidin-3-glucoside) forms of anthocyans have been analyzed. It was established that the total content of the analyzed species and forms of anthocyans in the white grain of the inbred line CE401 was 1174.5 mg/kg, and in the purple grain of the population F4(CE401×Chornosteblova) reached 2951.4 mg/kg, that is, the total content of anthocyans in grain increased in 2.5 times with the intensification of the coloring of sweet corn grain from white to purple. Significant variations in the percentage ratio of anthocyan fractions between two investigated genotypes of sweet corn were not observed. In both genotypes the content of glucosidic forms of anthocyans was almost twice exceeded the content of non-glucosidic forms (63.66% and 63.68% of non- glucosidic forms, respectively, in white and purple grain compared with 36.34% and 36.32% in glucosidic forms). Among the glucosidic forms in both genotypes was predominant peanidin-3-glucoside, and among non-glucosidic – pelargonidin. The intensity of the coloring of sweet corn grain in the purple coloring does not depend on the content or ratio of individual species and forms of anthocyans, but on their total content. The high content of anthocyans in purple maize grain makes it the actual to its using as a source of antioxidants and functional food


Aguirre-López, L. O., Chavez-Servia, J. L., Gоmez-Rodiles, C. C., & Beltrаn-Ramírez, J. C. (2017). Blue corn tortillas: effects on learning and spatial memory in rats. Plant Foods for Human Nutrition, 72, 448–450. doi: 10.1007/s11130-017-0642-1.

Chen, L., Yang, M., Mou, H., & Kong, Q. (2018). Ultrasound-assisted extraction and characterization of anthocyanins from purple corn bran. Journal of Food Processing and Preservation, 42(1), e13377. doi: 10.1111/jfpp.13377

Dwivedi, S. L., Upadhyaya, H. D., Chung, I. M., De Vita, P., García-Lara, S., Guajardo-Flores, D., & Ortiz, R. (2016). Exploiting phenylpropanoid derivatives to enhance the nutraceutical values of cereals and legumes. Frontiers in plant science, 7, 1–27. doi: 10.3389/fpls.2016.00763

Fernandez-Aulis, F., Hernandez-Vazquez, L., Aguilar-Osorio, G., Arrieta-Baez, D., & Navarro-Ocana, A. (2019). Extraction and identification of anthocyanins in corn cob and corn husk from cacahuacintle maize. Journal of Food Science, 84(5), 954–962. doi: 10.1111/1750-3841.14589

Gálvez-Ranilla, L., Christopher, A., Sarkar, D., Shetty, K., Chirinos, R., & Campos, D. (2017). Phenolic composition and evaluation of the antimicrobial activity of free and bound phenolic fractions from a peruvian purple corn (Zea mays L.) accession. Journal of Food Science, 82(12), 2968–2976. doi: 10.1111/1750-3841.13973.

Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-Visible spectroscopy. Current protocols in food analytical chemistry, 1, 683–695. doi: 10.1002/0471142913.faf0102s00

Gu, X., Cai, W., Fan, Y., Ma, Y., Zhao, X., & Zhang, C. (2018). Estimating foliar anthocyanin content of purple corn via hyperspectral model. Food science & nutrition, 6(3), 572–578. doi: 10.1002/fsn3.588

Guzmán-Gerónimo, R. I., Alarcón-Zavaleta, T. M., Oliart-Ros, R. M., Meza-Alvarado, J. E., Herrera-Meza, S., & Chávez-Servia, J. L. (2017). Blue corn extract improves blood pressure, lipid profile and fatty tissue in metabolic syndrome with a high content of sucrose in rats. Journal of Medicinal Food, 20(2), 110–115. doi: 10.1089/jmf.2016.0087

Harakotr, B., Suriharn, K. L., & Scott, M. P. (2016). Genetic analysis of anthocyanin content in purple waxy corn (Zea mays L. Var. Certain kulesh) kernel and cob. Journal of Breeding and Genetics, 48(2), 230–239.

Herrera-Sotero, M., González-Cortés, F., García- Galindo, H., Juarez-Aguilar, E., Rodríguez-Dorantes, M., Chávez-Servia, J., Oliart-Ros, R., & Guzmán-Gerónimo, R. (2017). Аnthocyanin profile of red maize native from mixteco race and their antiproliferative activity on cell line DU145. Flavonoids-From Biosynthesis to Human Health, 595–617. doi: 10.5772/67809

Hwang, S. H., Kwon, S. H., Wang, Z., Kim, T. H., Kang ,Y. H., Lee, J. Y., & Lim, S. S. (2016). Optimization of extraction parameters of PTP1β (protein tyrosine phosphatase 1β), inhibitory polyphenols, and anthocyanins from Zea mays L. using response surface methodology (RSM). BMC Complementary and Alternative Medicine, 16(1), 1–10. doi: 10.1186/s12906-016-1296-5

Intuyod, K., Priprem, A., Limphirat, W., & Charoensuk, L. (2014). Anti-inflammatory and anti-periductal fibrosis effects of an anthocyanin complex in Opisthorchis viverrini-infected hamsters. Food and Chemical Toxicology, 74, 206–215. doi: 10.1016/j.fct.2014.09.021

Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1), 1361779. doi: 10.1080/16546628.2017.1361779

Klimova, O. E. (2013). Rekombіnantnі lіnіi cukrovoi kukurudzi – novі dzherela selekcіjno-cіnnih oznak [Sweet maize rekombinant lines – a new sources of valuable traits for breeding]. Genetic Resources of Plants, 12, 63–72 (in Ukrainian).

Lao, F., & Giusti, M. M. (2018). Extraction of purple corn (Zea mays L.) cob pigments and phenolic compounds using food-friendly solvents. Journal of Cereal Science, 80, 87–93. doi: 10.1016/j.jcs.2018.01.001

Li, T., Zhang, W., Yang, H., Dong, Q., Ren, J., Fan, H., & Zhou, Y. (2019). Comparative transcriptome analysis reveals differentially expressed genes related to the tissue-specific accumulation of anthocyanins in pericarp and aleurone layer for maize. Scientific reports, 9(1), 2485. doi: 10.1038/s41598-018-37697-y

Magni, G., Marinelli, A., Riccio, D., Lecca, D., Tonelli, Ch., Abbracchio, M. P., Petroni, K., & Ceruti, S. (2018). Purple corn extract as anti-allodynic treatment for trigeminal pain: role of microglia. Front Cell Neurosci, 12, 1–11. doi: 10.3389/fncel.2018.00378

Makarevich, A. M., Shutova, A. G., Spiridonovich, E. V., & Reshetnikov, V. N. (2010). Funkcii i svojstva antocianov rastitelnogo syrya [Functions and properties of plant anthocyanins]. Works of BSU, 4(2), 147–157 (in Russian).

Nankar, A. N, Dungan, B., Paz, N., Sudasinghe, N., Schaub, T., Holguin, F. O., & Pratt, R. C. (2016). Quantitative and qualitative evaluation of kernel anthocyanins from southwestern United States blue corn. Journal of the Science of Food and Agriculture, 96(13), 42–52. doi: 10.1002/jsfa.7671.

Petroni, K., Trinei, M., Fornari, M., Calvenzani, V., Marinelli, A., Micheli, L. A., Pilu, R., Matros, A., Mock, H. P., Tonelli, C., & Giorgio, M. (2017). Dietary cyanidin 3-glucoside from purple corn ameliorates doxorubicin-induced cardiotoxicity in mice. Nutrition, metabolism and cardiovascular diseases, 27, 462–469. doi: 10.1016/j.numecd.2017.02.002

Psolova, A. O., Derkaсh, K. V., Bielikov, Ye. I., & Satarova, T. M. (2018). Vmist antocianiv u stebli riznih genotipiv kukurudzi [The content of anthocyanins in stalks of different maize genotypes]. Grain Crops, 2(2), 218–225 (in Ukrainian). doi: 10.31867/2523-4544/0028

Psolova, A. O., Derkaсh, K. V., Bielikov, Ye. I., & Satarova, T. M. (2017). Vmist antocianiv v zerni kukurudzi riznogo koloru [Content of anthocyanins in maize grain of different color]. Grain Crops, 1(2), 242–247 (in Ukrainian).

Rodriguez-Saona, L. E., & Wrolstad, R. E. (2001). Extraction, isolation, and purification of anthocyanins. Current protocols in food analytical chemistry, 1, 672–682. doi: 10.1002/0471142913.faf0101s00

Tretyakov, M. Y., Khoroshilov, S. A., Sidorov, A. N., Chulkov, A. N., Deineka, V. I., & Deineka, L. A. (2012). Kukuruza kak istochnik antocianov [Corn as a source of anthocyanins]. NTP: Agriculture and planting, 9, 30–32 (in Russian).

Urias-Lugo, D. A., Heredia, J. B., Serna-Saldivar, S. O., Muy-Rangel, M. D. & Valdez-Torres, J. B. (2015). Total phenolics, total anthocyanins and antioxidant capacity of native and elite blue maize hybrids (Zea mays L.). CyTA – Journal of Food, 13(3), 336–339, doi: 10.1080/19476337.2014.980324

Vazquez-Carrillo, M. G., Aparicio-Eusebio, L. A., Salinas-Moreno, Y., Buendía-Gonzalez, M. O., & Santiago-Ramos, D. (2018). Nutraceutical, physicochemical, and sensory properties of blue corn polvorones, a traditional flour-based confectionery. Plant Foods for Human Nutrition, 73(4), 321–327. doi: 10.1007/s11130-018-0692-z

Wang, H., Nair, M. G., Strasburg, G. M., Chang, Y. C., Booren, A. M., Gray, J. I., & De Witt, D. L. (1999). Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. Journal Natural Products, 62(2), 294–296. doi: 10.1021/np980501m

Weaver, K. F., Morales, V. , Dunn, S. L., Godde, K. & Weaver, P. F. (2017). An introduction to statistical analysis in research. John Wiley & Sons, Inc., USA. doi: 10.1002/9781119454205

Wu, T., Guo, X., Zhang, M., Yang, L., Wu, T., & Guo, X. (2017). Anthocyanin in black rice, soybean and purple corn increase fecal butyric acid and prevent liver inflammation in high fat diet-induced obese micе. Food & Function, 8(9). 3178–3186. doi: 10.1039/C7FO00449D

Yonemaru, J. I., Miki, K., Choi, S., Kiyosawa, A., & Goto, K. (2018). A genomic region harboring the Pl1 allele from the Peruvian cultivar JC072A confers purple cob on Japanese flint corn (Zea mays L.). Breeding science, 68(5), 582–586. doi: 10.1270/jsbbs.18090.

Zhang, Q., de Mejia, E. G., Luna-Vital, D., Tao, T., Chandrasekaran, S., Chatham, L., Juvik, J., Singh, V., & Kumar, D. (2019). Relationship of phenolic composition of selected purple maize (Zea mays L.) genotypes with their anti-inflammatory, anti-adipogenic and anti-diabetic potential. Food Chemistry, 289, 739–750. doi: 10.1016/j.foodchem.2019.03.116

How to Cite
Psolova, A., Derkach, K., & Satarova, T. (2019). Content of anthocyans in sweet corn with different grain coloring. Agrology, 2(2), 128–133.
Оriginal researches