Dynamics of microorganism in dark kastanozems in different systems of basic tillage and fertilizer in crop rotation on irrigation

Keywords: soil, irrigation, winter barley, corn, soybean, bacterial substances

Abstract

The influence of the systems of basic tillage on the number of microorganisms for the cultivation of winter barley, corn for grain and soybean in irrigated crop rotation in the South of Ukraine was determined. Placement of variants of the experiment of basic tillage was carried out: plowing – plow PLN-5-35; chisel loosening – GRNF-4M and CHG-40-02; disk to a shallow depth (12‒16 cm) – heavy disk harrow BDVP-4.2; disk on surface (6‒8 cm) – light disk harrow BDLP-4 with soil rollers. Placement of variants in the experiment is systematic, repetition – four times, area of ​​sites – 450 m2. The control variant is the generally accepted system of multi-depth plowing to a depth of 20‒22 cm for winter barley and 28‒30 cm – for corn for grain. It was found that the beginning of the spring vegetation of winter barley with the background of N75R60 per 1 hectare of crop rotation area, the largest number of microorganisms (27.16 million pieces / g of absolutely dry soil) noted in the variant of multi-depth basic tillage with the rotation. In the case of plowing at one depth (12‒14 cm) the number of ammonifying microorganisms was the lowest compared to other systems of primary tillage and relatively to plowing (23‒25 cm) decreased by 12‒23%. Inoculation of soybean seeds with a bacterial substances ABM (bacteria of the genus Rhizobium, strains 201, 202, 203) with fertilizing of N60P60 in the period from the beginning of the vegetation and before harvesting, there was an increase in the number of microorganisms within from 7.0 to 15.5%, in the case of shallow plowing at one depth and in variants with differentiated tillage. Increasing the nitrogen doze from N75 to N97.5 provides for an increase in the number of microorganisms by 4.4% and contributes to the improvement of agrophysical properties, increases the levels of plant nutrition with mineral nutrients and moisture.

References

Agbede, T.M. (2010) Tillage and fertilizer effects on some soil properties, leaf nutrient concentrations, growth and sweet potato yield on an Alfisol in south western Nigeria. Soil and Tillage Research, 110 (1), 25–32. doi: 10.1016/j.still.2010.06.003.

Ahmed, M. A., Sanaullah, M., Blagodatskaya, E., Mason–Jones, K., Jawad, H., Kuzyakov, Y., & Dippold, M. A. (2018) Soil microorganisms exhibit enzymatic and priming response to root mucilage under drought. Soil Biology and Biochemistry, 116, 410–418. doi: 10.1016/j.soilbio.2017.10.041.

Bamminger, C., Poll, C., Sixt, C., Högy, P., Wüst, D., Kandeler, E., & Marhan, S. (2016) Short-term response of soil microorganisms to biochar addition in a temperate agroecosystem under soil warming. Agriculture, Ecosystems & Environment, 233, 308–317. doi: 10.1016/j.agee.2016.09.016.

Bei, S., Zhang, Y., Li, T., Christie, P., Li, X., & Zhang, J. (2018) Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil. Agriculture, Ecosystems & Environment, 260, 58–69. doi: 10.1016/j.agee.2018.03.014.

Blagodatskaya, E., & Kuzyakov, Y. (2013) Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology and Biochemistry, 67, 192–211. doi: 10.1016/j.soilbio.2013.08.024.

Bottinelli, N., Angers, D. A., Hallaire, V., Michot, D., Guillou, C. L., Cluzeau, D., Heddadj, D., & Menasseri–Aubry, S. (2017) Tillage and fertilization practices affect soil aggregate stability in a Humic Cambisol of Northwest France. Soil and Tillage Research, 170, 14–17. doi: 10.1016/j.still.2017.02.008.

Cano, A., Núñez, A., Acosta–Martinez, V., Schipanski, M., Ghimire, R., Rice, C., & West, C. (2018) Current knowledge and future research directions to link soil health and water conservation in the Ogallala Aquifer region. Geoderma, 328, 109–118. doi: 10.1016/j.geoderma.2018.04.027.

D’Hose, T., Molendijk, L., Vooren, L. V., Berg, W., Hoek, H., Runia, W., Evert, F., Berge, H., Spiegel, H., Sandèn, T., Grignani, C., & Ruysschaert, G. (2018) Responses of soil biota to non–inversion tillage and organic amendments: An analysis on European multiyear field experiments. Pedobiologia, 66, 18–28. doi: 10.1016/j.pedobi.2017.12.003.

Dang, Y. P., Moody, P. W., Bell, M. J., Seymour, N. P., Dalal, R. C., Freebairn, D. M., & Walker, S. R. (2015) Strategic tillage in no–till farming systems in Australia’s northern grains–growing regions: II. Implications for agronomy, soil and environment. Soil and Tillage Research, 152, 115–123. doi: 10.1016/j.still.2014.12.013.

Debiase, G., Montemurro, F., Fiore, A., Rotolo, C., Farrag, K., Miccolis, A., & Brunetti, G. (2016) Organic amendment and minimum tillage in winter wheat grown in Mediterranean conditions: Effects on yield performance, soil fertility and environmental impact. European Journal of Agronomy, 75, 149–157. doi: 10.1016/j.eja.2015.12.009.

Duchene, O., Vian, J.–F., & Celette, F. (2017) Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. Agriculture, Ecosystems & Environment, 240, 148–161. doi: 10.1016/j.agee.2017.02.019.

Fiedler, S. R., Buczko, U., Jurasinski, G., & Glatzel, S. (2015) Soil respiration after tillage under different fertiliser treatments – implications for modelling and balancing. Soil and Tillage Research, 150, 30–42. doi: 10.1016/j.still.2014.12.015.

Geisseler, D., Linquist, B. A., & Lazicki, P. A. (2017) Effect of fertilization on soil microorganisms in paddy rice systems – A meta–analysis. Soil Biology and Biochemistry, 115, 452–460. doi: 10.1016/j.soilbio.2017.09.018.

Götze, P., Rücknagel, J., Jacobs, A., Märländer, B., Koch, H.–J., Holzweißig, B., Steinz, M., & Christen, O. (2016) Sugar beet rotation effects on soil organic matter and calculated humus balance in Central Germany. European Journal of Agronomy, 76, 198–207. doi: 10.1016/j.eja.2015.12.004.

Hydbom, S., Ernfors, M., Birgander, J., Hollander, J., Jensen, E. S., & Olsson, P. A. (2017) Reduced tillage stimulated symbiotic fungi and microbial saprotrophs, but did not lead to a shift in the saprotrophic microorganism community structure. Applied Soil Ecology, 119, 104–114. doi: 10.1016/j.apsoil.2017.05.032.

Ishaq, M., Ibrahim, M., & Lal, R. (2002) Tillage effects on soil properties at different levels of fertilizer application in Punjab, Pakistan. Soil and Tillage Research, 68(2), 93–99. doi: 10.1016/S0167–1987(02)00111–3.

Jia, R., Qu, Z., You, P., & Qu, D. (2018) Effect of biochar on photosynthetic microorganism growth and iron cycling in paddy soil under different phosphate levels. Science of The Total Environment, 612, 223–230. doi: 10.1016/j.scitotenv.2017.08.126.

Joergensen, R. G., & Wichern, F. (2018) Alive and kicking: Why dormant soil microorganisms matter. Soil Biology and Biochemistry, 116, 419–430. doi: 10.1016/j.soilbio.2017.10.022.

Jokela, D., & Nair, A. (2016) Effects of reduced tillage and fertilizer application method on plant growth, yield, and soil health in organic bell pepper production. Soil and Tillage Research, 163, 243–254. doi: 10.1016/j.still.2016.06.010.

Keshavarz, R., Yesuf, A., Mohammed, A., & Chen, C. (2016) Enhanced efficiency nitrogen fertilizer effect on camelina production under conventional and conservation tillage practices. Industrial Crops and Products, 94, 783–789. doi: 10.1016/j.indcrop.2016.09.043.

Kõlli, R. (2017) Influence of land use change on fabric of humus cover (pro Humus form). Applied Soil Ecology. doi: 10.1016/j.apsoil.2017.06.022

Kots, S. Y., Pattika, N. V., & Pattika V. F. (2008) Mіkrobіologіchna trasformatsіya azotu v gruntah [Microbiological transformation of nitrogen in the soils]. Fodders and fodder production, 62, 228–234 (in Ukrainian).

Lebed, E. M., Andrussenko, I. I., & Pabat, I. A. (1992) Sіvozmіni v іntensivnomu zemlerobstvі [Crops rotation in the intensive agriculture]. Urozhay, Kiev (in Ukrainian).

Liu, S., Coyne, M. S., & Grove, J. H. (2017) Long–term tillage and nitrogen fertilization: Consequences for nitrifier density and activity. Applied Soil Ecology, 120, 121–127. doi: 10.1016/j.apsoil.2017.07.034

Lupwayi, N. Z., Grant, C. A., Soon, Y. K., Clayton, G. W., Bittman, S., Malhi, S. S., & Zebarth, B. J. (2010) Soil microbial community response to controlled–release urea fertilizer under zero tillage and conventional tillage. Applied Soil Ecology, 45(3), 254–261. doi: 10.1016/j.apsoil.2010.04.013.

Lupwayi, N. Z., Lafond, G. P., Ziadi, N., & Grant, C. A. (2012) Soil microbial response to nitrogen fertilizer and tillage in barley and corn. Soil and Tillage Research, 118, 139–146. doi: 10.1016/j.still.2011.11.006.

Maharjan, G. R., Prescher, A.–K., Nendel, C., Ewert, F., Mboh, C. M., Gaiser, Th., & Seidel, S. J. (2018) Approaches to model the impact of tillage implements on soil physical and nutrient properties in different agro–ecosystem models. Soil and Tillage Research, 180, 210–221. doi: 10.1016/j.still.2018.03.009.

Molina–Montenegro, M. A., Oses, R., Atala, C., Torres–Díaz, C., Bolados, G., & León–Lobos, P. (2016) Nurse effect and soil microorganisms are key to improve the establishment of native plants in a semiarid community. Journal of Arid Environments, 126, 54–61. doi: 10.1016/j.jaridenv.2015.10.016.

Perego, A., Wu, L., Gerosa, G., Finco, A., Chiazzese, M., & Amaducci, S. (2016) Field evaluation combined with modelling analysis to study fertilizer and tillage as factors affecting N2O emissions: A case study in the Po valley (Northern Italy). Agriculture, Ecosystems & Environment, 225, 72–85. doi: 10.1016/j.agee.2016.04.003.

Pramanik, P., Safique, S., Zahan, A., Phukan, M., & Ghosh, S. (2017) Cellulolytic microorganisms control the availability of nitrogen in microcosm of shredded pruning litter treated highly acidic tea–growing soils of Assam in Northeast India. Applied Soil Ecology, 120, 30–34. doi: 10.1016/j.apsoil.2017.07.026.

Saljnikov, E., Saljnikov, A., Rahimgalieva, S., Cakmak, D., Kresovic, M., Mrvic, V., & Dzhalankuzov, T. (2014) Impact of energy saving cultivations on soil parameters in northern Kazakhstan. Energy, 77, 35–41. doi: 10.1016/j.energy.2014.03.042.

Segal, L. M., Miller, D. N., McGhee, R. P., Loecke, T. D., Cook, K. L., Shapiro, C. A., & Drijber, R. A. (2017) Bacterial and archaeal ammonia oxidizers respond differently to long–term tillage and fertilizer management at a continuous maize site. Soil and Tillage Research, 168, 110–117. doi: 10.1016/j.still.2016.12.014.

Tao, J., Bai, T., Xiao, R., Wang, P., Wang, F., Duryee, A. M., Wang, Y., Zhang, Y., & Hu, Sh. (2018) Vertical distribution of ammonia–oxidizing microorganisms across a soil profile of the Chinese Loess Plateau and their responses to nitrogen inputs. Science of The Total Environment, 635, 240–248. doi: 10.1016/j.scitotenv.2018.04.104.

Ushkarenko, V. O., Nikishenko, V. L., Goloborodko, S. P., & Kokovikhin, S. V. (2008) Dispersіyniy і korelyatsіyniy analіz v zemlerobstvі ta roslinnitstvі [Dispersion and correlation analysis in agriculture and crop production]. Aylant, Kherson (in Ukrainian).

Veremeenko, S. I., & Trushev, S. S. (2011) Bіologіchnі sistemi zemlerobstva [Biological systems of agriculture: tutorial]. Rivne (in Ukrainian).

Wang, Y., Li, C., Tu, C., Hoyt, G. D., DeForest, J. L., & Hu, S. (2017) Long–term no–tillage and organic input management enhanced the diversity and stability of soil microbial community. Science of The Total Environment, 609, 341–347. doi: 10.1016/j.scitotenv.2017.07.053.

Watts, D. B., Runion, G. B., & Balkcom, K. S. (2017) Nitrogen fertilizer sources and tillage effects on cotton growth, yield, and fiber quality in a coastal plain soil. Field Crops Research, 201, 184–191. doi: 10.1016/j.fcr.2016.11.008.

Williams, M. R., King, K. W., Duncan, E. W., Pease, L. A., & Penn, C. J. (2018) Fertilizer placement and tillage effects on phosphorus concentration in leachate from fine–textured soils. Soil and Tillage Research, 178, 130–138. doi: 10.1016/j.still.2017.12.010.

Yan, N., Marschner, P., Cao, W., Zuo, C. & Qin, W. (2015) Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 3(4), 316–323. doi: 10.1016/j.iswcr.2015.11.003.

Yang, L., Zhang, L., Geisseler, D., Wu, Z., Gong, P., Xue, Y., Yu, C., Juan, Y., & Horwath, W. R. (2016) Available C and N affect the utilization of glycine by soil microorganisms. Geoderma, 283, 32–38. doi: 10.1016/j.geoderma.2016.07.022.

Zanella, A., Bolzonella, C., Lowenfels, J., Ponge, J.–F., Bouché, M., Saha, D., Kukal, S. S., Fritz, I., Savory, A., Blouin, M., Sartori, L., Tatti, D., Kellermann, L. A., Trachsel, P., Burgos, S., Minasny, B., & Fukuoka, M. (2018). Humusica 2, article 19: Techno humus systems and global change–conservation agriculture and 4/1000 proposal. Applied Soil Ecology, 122(2), 271–296. doi: 10.1016/j.apsoil.2017.10.036.

Zhang, P., Ren, C., Sun H., & Min, L. (2018) Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. Science of The Total Environment, 615, 59–69. doi: 10.1016/j.scitotenv.2017.09.097.

Zvyagintseva, D. G. (1991) Metodu pochvennoy microbiologii i biohimii [Methods of Soil Microbiology and Biochemistry]. Kolos, Moscow (in Russian).

Published
2018-08-24
How to Cite
Markovskaya, O. (2018). Dynamics of microorganism in dark kastanozems in different systems of basic tillage and fertilizer in crop rotation on irrigation. Agrology, 1(3), 294-299. https://doi.org/10.32819/2617-6106.2018.13009
Section
Оriginal researches